Почему конденсатор нужно ставить ближе к твиттеру
Перейти к содержимому

Почему конденсатор нужно ставить ближе к твиттеру

  • автор:

Конденсатор в автоакустике.

Из школьных уроков физики известно, что конденсаторы — это устройства, которые могут накапливать и отдавать электрический заряд, что ёмкость конденсатора — измеряется в фарадах (Ф), и что конденсатор ёмкостью 1Ф, заряженный до напряжения 1В, накапливает электрический заряд, эквивалентный силе тока 1А, протекающего в течение 1 секунды. Именно эти параметры — ёмкость и способность быстро отдавать ток — делают конденсатор полезным для улучшения звучания и прежде всего нижнего регистра. Усилитель может кратковременно потреблять пиковую мощность, в три раза превышающую среднюю. Если проводить аналогию с домашним усилителем, то он, потребляет от источника питания ту же мощность, что и автомобильный, во-первых, требует от сети гораздо меньше тока, поскольку питание от напряжения 220В, а во-вторых, берёт от сети этот ток просто с той скоростью, которая нужна. Автомобильному намного сложней, поскольку штатный аккумулятор призван решать другие задачи и просто не способен мгновенно обеспечить усилитель требуемым количеством тока — как следствие, возникают звуковые искажения (невнятный бас), связанные с токовым голоданием и снижением выходной мощности. В отличии от штатного аккумуляторя, конденсатор умеет быстро разряжаться, он как бы сглаживает падение напряжения, обеспечивая усилитель необходимым током в эти короткие промежутки времени. Звук сохраняет хорошее качество.

Что такое специальный конденсатор.
После того как мы разобрались в том, что такое конденсатор и как он помогает улучшить звучание, вернемся к термину «специальный конденсатор» (т.е. конденсатор, адаптированный к напряжению и условиям эксплуатации в автомобиле). Прежде всего заметим, что общепринятое правило, по которому выбирают необходимую емкость конденсатора, представлена в следующем виде: минимум 1Ф на 1000Вт выходной мощности усилителя. Это очень большая ёмкость, требующая не ординарных подходов к конструкции. Помимо большой ёмкости, конденсатор обязан удовлетворять еще такому важному параметру, как низкое внутренне сопротивление — от этого как раз зависит скорость, с которой отдается ток, а это не мало важно как его емкость. Например, у лучших образцов сопротивление меньше 0,1 мОм.
Разновидность конденсаторов.
Сегодня на рынке представлено достаточно большое количество конденсаторов: от самых простых, стоимостью порядка нескольких сотен гривен, до элитных, которые при том же номинале могут стоить нескольких тысяч гривен. Обычно их емкость колеблется от 0.25 до 2Ф, однако в последнее время появились и совершенно экстремальные варианты ёмкостью 10 и даже 20Ф, — от этих «экстремалов» можно даже завести машину с помощью стартера. Как правило, подобные конденсаторы, используемые в мощных автомобильных системах, уже оборудованы дистрибьютором для подключения нескольких усилителей. Здесь было бы полезно ответить и на такой вопрос: что лучше — один большой конденсатор или несколько поменьше номиналом? По законам физики, включение в параллель нескольких конденсаторов уменьшит их сопротивление, то есть амплитуда импульса тока будет больше. Знают это и разработчики, строя мощный современный конденсатор из батареи маленьких.
Правила установки конденсатора.
Поскольку сопротивление конденсатора очень мало, то, для предотвращения снижения амплитуды тока из-за сопротивления соединительных проводов, устанавливать его необходимо непосредственно рядом с усилителем. Максимальное расстояние, определенное правилами, составляет 60см, но чем меньше, тем лучше. Например, когда конденсатор крепится непосредственно на самом усилителе, что удобно и практично. В некоторых инсталляциях приходится видеть такое: усилители размещены на одной боковой стенке багажника, конденсаторы — на другой. Даже если это будет выглядеть красиво и зрелищно, проку от такого размещения мало — слишком велико расстояние между конденсатором и усилителями. Однако при подключении нельзя просто подсоединить незаряженный конденсатор к положительному и отрицательному проводам питания, поскольку в этом случае он будет потреблять большой ток от аккумулятора и может сжеть предохранители. Чтобы избежать этих неприятностей, многие производители устанавливают специальную электронную схему, благодаря которой конденсатор заряжается постепенно. Как правило, различие в цене между конденсатором, оснащенным такой схемой, и его «пустым» аналогом довольно символическое, так что лучше не экономить. Если такой схемы нет, то конденсатор необходимо предварительно зарядить через лампочку (12-вольтовую), включенную последовательно. Признаком того, что конденсатор зарядился и его можно будет установить на приготовленное место, станет прекращение свечения лампочки.
Особенности установки конденсатора.
Устанавливать конденсатор можно в схему любой мощности, даже если у вас работает только один усилитель, всроенный в головное устройство, главное, чтобы изложенные выше правила не нарушались. Однако, по уже сложившемуся негласному закону, устанавливают конденсатор в звуковую систему, оборудованную внешним усилителем (-ями), то есть, начиная с минимальной мощности всей системы 250-300Вт. Нет необходимости устанавливать конденсатор только в аудиосистемы, оснащенные специальным «звуковым» аккумулятором. В отличии от конденсатора, «звуковой» аккумулятор умеет не только очень быстро отдавать ток в нагрузку, но и позволяет сильно разгрузить бортовую сеть автомобиля.
А теперь разберем ситуации которые являются уже мифом в автозвуке.
Часто слышу такое: «У меня садиться АКБ и мне посоветовали поставить конденсатор что бы не садился АКБ», сугубо ошибочное мнение. Хотя бы если включить мозги и подумать. Конденсатор это устройство по типу АКБ но такое которое быстро может набрать ток и быстро его отдать (ОН не держит ток как АКБ), а используется как буфер питания, или по сути стабилизатор напряжения. Он в силах отдать быстро ток когда он нужен для усилителя чем тот же АКБ, но при этом он с АКБ тянет на себя ток для подзаряда и выдачи следующей порции. Как правило ток он отдает за доли секунды, так сказать помогая АКБ, хотя тоже вопрос спорный, АКБ тоже может быть тот же Optima это гелеевый АКБ который даст фору любому конденсатору. Вывод просто подключая в цепь конденсатор что с ним что без него АКБ разряжается с одинаковой скоростью. Но вы это ощутите немного позже, поскольку если с АКБ уже будет идти 11 вольт то за счет конденсатора будет увеличиваться напряжение в цепи усилителя до 12 к примеру, но снова все зависит от многих факторов вплоть до сечения и длинны провода от АКБ.

Второй момент который нужно понимать, конденсатор постоянно заряжен в цепи, и он в состоянии покоя все равно рассеивает ток, и соответсвенно пополняет его с АКБ постоянно, т.е. если в системе стоит конденсатор он тянет ток даже без включенной музыки. Что тоже нужно учитывать.

Из плюсов конденсатора могу ответить его хорошее подавления всяких помех в системе питания. Т.е. подавления помех от зажигание и генератора, но снова не панацея.
Рекомендации по выбору конденсатора.
В заключение, несколько рекомендаций по выбору конденсатора.
Во-первых, никогда не покупайте конденсатор сомнительного происхождения (взрываются они страшно). Во-вторых, при покупке обращайте внимание на удобство установки и наличие защиты клемм от случайного замыкания. И, в-третьих, если вы конечно не опытный радиоконструктор, но собираетесь устанавливать конденсатор самостоятельно, то очень желательно чтобы он имел все возможные схемы защиты и приборы визуального контроля состояния конденсатора и бортовой сети — это сильно облегчит вам не только установку, но и дальнейшую эксплуатацию.

Коментарі (1)

А вообще лучше всего поставить вместо конденсатора в близи усилителя АКБ способный быстро отдавать ток большой мощности, начать можно с AGM и далее есть еще гелевый АКБ это будет намного лучше и просадки очень сильно уйдут. Я скажу так в мощных системах особенно спортсмены по SPL (замерам громкости) отказываются напрочь от конденсатором, устанавливая дополнительные генераторы и АКБ с хорошей отдачей (не обычные кислотники где есть пробки для проверки уровня электролита, эти АКБ годны только для авто. )

Додати коментар RSS стрічка RSS-стрічка коментарів

Последовательное и параллельное соединение конденсаторов. Подбор при замене

Практически ни одно электронное устройство не обходится без конденсатора. Он может стоять на входе или выходе устройства, перед или после некоторых элементов. Применяется последовательное и параллельное соединение конденсаторов. Как и для чего их подключать тем или иным способом и будем обсуждать.

Что такое конденсатор и его основные характеристики

Конденсатор — это радиодеталь, которая работает как накопитель электрической энергии. Чтобы понятнее было, как он работает, его можно представить как своего рода небольшой аккумулятор. Обозначается двумя параллельными чёрточками.

Схематическое изображение конденсаторов

Обозначения различных типов конденсаторов на схемах. Чаще всего из строя выходят электролитические конденсаторы, так что стоит запомнить их обозначение

Основная характеристика конденсатора любого типа — ёмкость. Это то количество заряда, которое он в состоянии накопить. Измеряется в Фарадах (сокращенно просто буква F или Ф), а вернее, в более «мелких» единицах:

  • микрофарадах — мкФ это 10 -6 фарада,
  • нанофарадах — нФ это 10 -9 фарада;
  • пикофарадах — пФ это 10 -12 фарада.

Вторая важная характеристика — номинальное напряжение. Это то напряжение, при котором гарантирована длительная безотказная работа. Например, 4700 мкФ 35 В, где 35 В — это номинальное напряжение 35 вольт.

Так выглядит конденсатор

У крупных по размеру конденсаторов, ёмкость и напряжение указаны на корпусе

Нельзя ставить конденсатор в цепь с более высоким напряжением чем то, которое на нём указано. В противном случае он быстро выйдет из строя.

Можно использовать конденсаторы на 50 вольт вместо конденсаторов на 25 вольт. Но это порой нецелесообразно, так как те, которые рассчитаны на более высокое напряжение, дороже, да и габариты у них больше.

Что он из себя представляет и как работает

В самом простейшем случае конденсатор состоит из двух токопроводящих пластин (обкладок), разделённых слоем диэлектрика.

Что такое электрический конденсатор

Между обкладками находится слой диэлектрика — материала плохо проводящего электрический ток

На пластины подаётся постоянный или переменный ток. Вначале, пока энергия накапливается, потребление энергии конденсатором высокое. По мере «наполнения» ёмкости оно снижается. Когда заряд набран полностью, токопотребления вообще нет, источник питания как бы отключается. В это время конденсатор сам начинает отдавать накопленный заряд. То есть, он на время становится своеобразным источником питания. Поэтому его и сравнивают с аккумулятором.

Где и для чего используются

Как уже говорили, сложно найти схему без конденсаторов. Их применяют для решения самых разных задач:

  • Для сглаживания скачков сетевого напряжения. В таком случае их ставят на входе устройств, перед микросхемами, которые требовательны к параметрам питания.
  • Для стабилизации выходного напряжения блоков питания. В таком случае надо искать их перед выходом.

Внешний вид электролитических цилиндрических конденсаторов

Часто можно увидеть электролитические цилиндрические конденсаторы

Конденсаторы встречаются часто и область их применения широка. Но надо знать как правильно их подключить.

Как подключать конденсаторы

В электротехнике есть два основных вида соединения деталей — параллельное и последовательное. Конденсаторы также можно подключать по любому из указанных способов. Есть ещё особая — мостовая схема. Она имеет собственную область использования.

Конденсаторы подключат параллельно и последовательно

В схеме может быть последовательное и параллельное соединение конденсаторов

Параллельное подключение конденсаторов

При параллельном соединении все конденсаторы объединены двумя узлами. Чтобы параллельно подключить конденсаторы, скручиваем попарно их ножки, обжимаем пассатижами, потом пропаиваем. У некоторых конденсаторов большие корпуса (банки), а выводы маленькие. В таком случае используем провода (как на рисунке ниже).

Параллельное соединение конденсаторов

Так физически выглядит параллельное подключение конденсаторов

Если конденсаторы электролитические, следите за полярностью. На них должны стоять «+» или «-«. При их параллельном подключении соединяем одноимённые выводы — плюс к плюсу, минус — к минусу.

Расчёт суммарной ёмкости

При параллельном подключении конденсаторов их номинальная ёмкость складывается. Просто суммируете номиналы всех подключённых элементов, сколько бы их ни было. Два, три, пять, тридцать. Просто складываем. Но следите, чтобы размерность совпадала. Например, складывать будем в микрофарадах. Значит, все значения переводим в микрофарады и только после этого суммируем.

Как рассчитать ёмкость при параллельном соединении конденсаторов

Расчёт ёмкости при параллельном подключении конденсаторов

Когда на практике применяют параллельное соединение конденсаторов? Например, тогда, когда надо заменить «пересохший» или сгоревший, а нужного номинала нет и бежать в магазин некогда или нет возможности. В таком случае подбираем из имеющихся в наличии. В сумме они должны дать требуемое значение. Все их проверяем на работоспособность и соединяем по приведенному выше принципу.

Пример расчёта

Например, включили параллельно два конденсатора — 8 мкФ и 12 мкФ. Следуя формуле, их номиналы просто складываем. Получаем 8 мкФ + 12 мкФ = 20 мкФ. Это и будет суммарная ёмкость в данном случае.

Рассчитать емкость параллельно соединенных конденсаторов

Пример расчёта конденсаторов при параллельном подключении

Последовательное соединение

Последовательным называется соединение, когда выход одного элемента соединяется со входом другого. Сравнить можно с вагонами или цепочкой из лампочек. По такому же принципу последовательно соединяют и конденсаторы.

Как последовательно соединять конденсаторы

Вот что значит последовательно соединить конденсаторы

При подключении полярных электролитических «кондеров» надо следить за соблюдением полярности. Плюс первого конденсатора подаете на минус второго и так далее. Выстраиваете цепочку.

Существуют неполярные (биполярные) электролитические конденсаторы. При их соединении нет необходимости соблюдать полярность.

Как определить ёмкость последовательно соединенных конденсаторов

При последовательном соединении конденсаторов суммарная ёмкость элементов будет меньше самого маленького номинала в цепочке. То есть, ёмкость последовательно соединённых конденсаторов уменьшается. Это также может пригодиться при ремонте техники — замена конденсатора требуется часто.

Как подключать конденсаторы последовательно

Последовательно соединённые конденсаторы

Использовать формулу расчёта приведённую выше не очень удобно, поэтому её обычно используют в преобразованном виде:

Как считать емкость при последовательном соединении

Формула расчёта ёмкости при последовательном соединении

Это формула для двух элементов. При увеличении их количества она становится значительно сложнее. Хотя, редко можно встретить больше двух последовательных конденсаторов.

Пример расчёта

Какая суммарная ёмкость будет если конденсаторы на 12 мкФ и 8 мкФ соединить последовательно? Считаем: 12*8 / (12+8) = 96 / 20 = 4,8 мкФ. То есть, такая цепочка соответствует номиналу 4,8 мкФ.

Как рассчитать емкость конденсатора

Пример расчета ёмкости при последовательном подключении конденсаторов

Как видите, значение меньше чем самый маленький номинал в последовательности. А если подключить таким образом два одинаковых конденсатора, то результат будет вполовину меньше номинала. Например, рассчитаем для двух ёмкостей по 12 мкФ. Получим: 12*12 / (12 + 12) = 144 / 24 = 6 мкФ. Проверим для 8 мкФ. Считаем: 8*8 / (8+8) = 64 / 16 = 4 мкФ. Закономерность подтвердилась. Это правило можно использовать при подборе номинала.

Почему электролитические конденсаторы выходят из строя и что делать

Зачастую, чтобы отремонтировать вышедшую из строя электронную технику, достаточно найти и заменить вздувшиеся конденсаторы. Дело в том, что срок жизни их небольшой — 1000-2000 тысячи рабочих часов. Потом он обычно выходит из строя и требуется его замена. И это при нормальном напряжении не выше номинального. Так происходит потому, что диэлектрик в конденсаторах, чаще всего, жидкий. Жидкость понемногу испаряется, меняются параметры и, рано или поздно, конденсатор вздувается.

Вышедшие из строя можно определить по внешнему виду или измерить

Электролитические конденсаторы имеют специальные насечки на верхушке корпуса, чтобы при выходе из строя избежать взрыва

Высыхает электролит не только во время работы. Даже просто «от времени». Это конструктивная особенность электролитических конденсаторов. Поэтому не стоит ставить выпаянные из старых схем конденсаторы или те, которые несколько лет (или десятков лет) хранятся в мастерской. Лучше купить «свежий», но проверьте дату производства.

Можно ли продлить срок эксплуатации конденсаторов? Можно. Надо улучшить теплоотвод. Чем меньше греется электролит, тем медленнее высыхает. Поэтому не стоит ставить аппаратуру вблизи отопительных приборов.

Продлить срок службы конденсаторов можно улучшив охлаждение

Для улучшения отвода тепла ставят радиаторы

Второе — надо следить за тем, чтобы хорошо работали кулера. Третье — если рядом стоят детали, которые активно греются во время работы, надо конденсаторы каким-то образом от температуры защитить.

Как подобрать замену

Если часто приходится менять один и тот же конденсатор, его лучше заменить на более «мощный» — той же ёмкости, но на большее напряжение. Например, вместо конденсатора на 25 вольт, поставить конденсатор на 35 вольт. Только надо иметь в виду, что более мощные конденсаторы имеют большие размеры. Не всякая плата позволяет сделать такую замену.

Как найти замену

Конденсатор той же ёмкости, но рассчитанный на большее напряжение, имеет больший размер

Можно поставить параллельно несколько конденсаторов с тем же напряжением, подобрав номиналы так, чтобы получить требуемую ёмкость. Что это даст? Лучшую переносимость пульсаций тока, меньший нагрев и, как следствие, более продолжительный срок службы.

Что будет, если поставить конденсатор большей ёмкости?

Часто приходит в голову идея поставить вместо сгоревшего или вздувшегося конденсатор большей ёмкости. Ведь он должен меньше греться. Так, во всяком случае, кажется. Ёмкость практически никак не связана со степенью нагрева корпуса. И в этом выигрыша не будет.

Как устроен электрический конденсатор

Устройство электролитического конденсатора

По нормативным документам отклонение номинала конденсаторов допускается в пределах 20%. Вот на эту цифру можете спокойно ставить больше/меньше. Но это может привести к изменениям в работе устройства. Так что лучше найти «родной» номинал. И учтите, что не всегда можно ставить большую ёмкость. Можно если конденсатор стоит на входе и сглаживает скачки питания. Вот тут большая ёмкость уместна, если для её установки достаточно места. Это точно нельзя делать там, где конденсатор работает как фильтр, отсекающий заданные частоты.

Можно менять на ту же ёмкость, но чуть более высокое напряжение. Это имеет смысл. Но размеры такого конденсатора будут намного больше. Не в любую плату получится его установить. И учтите, что корпус его не должен соприкасаться с другими деталями.

Наши статьи

Комплект Metronome продемонстрировал невероятную точность в передаче тембров и заметно расширил звуковой диапазон вверх — впечатления Николая Ефремова (салон AV) о полном сете Metronome AQWO.

Metronome AQWO получает престижную награду «Выбор эксперта»! Обзор от Николая Ефремова (Salon AV)
Peak Consult: история, принципы и достижения

Качество Lexus по цене Toyota! Myryad Z350 получает престижную награду «Выбор эксперта». Обзор от Николая Ефремова (Салон AV)

Metronome AQWO — самый выдающийся цифровой источник из всех представленных на выставке! Обзор от Максима Наумова

High End звучание совсем не за хай-эндную цену! Audio Analogue Aacento получает престижную награду «Выбор эксперта»! Обзор от Николая Ефремова (салон AV)

Как рассчитать емкость гасящего конденсатора простого блока питания

Актуальные данные о спецоперации на Украине

Блок питания с гасящим конденсатором представляет собой простейший вариант запитать какое нибудь маломощное устройство.

При всей своей простоте он имеет и два минуса:
1. Он гальванически связан с сетью! потому такие БП используются там, где нет вероятности прикосновения к контактам.
2. Такой Бп имеет не очень большой выходной ток. При увеличении выходного тока надо увеличивать емкость гасящего конденсатора и его габариты становятся существенными.

Внимание, будьте очень аккуратны, не прикасайтесь к контактам этого БП когда он включен.

Простейшая схема данного БП выглядит так:

Как можно увидеть из схемы, последовательно с сетью стоит конденсатор. Он то и является балластом,, на котором гасится часть напряжения.
Конденсатор не пропускает постоянный ток, но так как в сети переменный и конденсатор в итоге постоянно перезаряжется, то и получается, что в таком случае ток на выходе есть. Причем сила тока напрямую зависит от емкости конденсатора.

Собственно потому для расчета емкости конденсатора необходимо знать как минимум выходной ток нашего будущего БП, причем надо учесть и потребление стабилизатора, обычно это несколько мА.

И так. Есть две формулы, сложная и простая.
Сложная — подходит для расчета при произвольном выходном напряжении.
Простая — подходит в ситуациях, когда выходное напряжение не более 10% от входного.
I — выходной ток нашего БП
Uвх — напряжение сети, например 220 Вольт
Uвых — напряжение на выходе БП (или до стабилизаторе если такой есть), например 12 Вольт.
С — собственно искомая емкость.

Например я хочу сделать БП с выходным током до 150мА. Пример схемы приведен выше, вариант применения — радиопульт с питанием 5 Вольт + реле на 12 Вольт.
Подставляем наши 0.15 Ампера и получаем емкость 2.18мкФ, можно взять ближайший номинал из стандартных — 2,2мкФ, ну или «по импортному» — 225.

Все как бы вроде хорошо, схема простая, но есть несколько минусов, которые надо исключить:
1. Бросок тока при включении может сжечь диодный мост.
2. При выходе из строя конденсатора может быть КЗ
3. Если оставить как есть, то вполне можно получить разряд от входного конденсатора, так как на нем может долго присутствовать напряжение даже после отключения БП от сети.
4. При снятии нагрузки напряжение на конденсаторе до стабилизатора поднимется до довольно большого значения.

Решения:
1. Резистор R1 последовательно с конденсатором
2. Предохранитель 0.5 Ампера.
3. Резистор R2 параллельно конденсатору.
4. Супрессор на 12 Вольт параллельно конденсатору после диодного моста. Я не рекомендую здесь использовать стабилитроны, супрессоры рассчитаны на большую мощность рассеивания и схема будет работать надежнее.

На схеме красным цветом я выделил новые компоненты, синим — небольшое дополнение в виде светодиода.

Но гасящие конденсаторы используют часто и в дешевых светодиодных лампах. Это плохо, так как у таких ламп меньше надежность и часто высокие пульсации света.
Ниже упрощенный вариант схемы такой лампы.

Попробуем рассчитать емкость для такого применения, но так как напряжение на выходе будет явно больше чем 1/10 от входного, то применим первую формулу.
В качестве выходного напряжения я заложил 48 Вольт, 16 светодиодов по 3 Вольта на каждом. Конечно это все условно, но близко к реальности.
Ток — 20мА, типичный максимальный ток для большинства индикаторных светодиодов.

У меня вышло, что необходим конденсатор емкостью 0.298 мкФ. Ближайший из распространенных номиналов — 0.27 или 0.33мкФ. Первый встречается гораздо реже, а второй уже будет давать превышение тока, потому можно составить конденсатор из двух параллельных, например по 0.15мкФ. При параллельном включении емкость складывается.

С емкостью разобрались, осталось еще пара моментов:
1. Напряжение конденсатора
2. Тип конденсатора.

С напряжением все просто, можно применить конденсатор на 400 Вольт, но надежнее на 630, хоть они и имеют больше размер.

С типом чуть сложнее. Для такого применения лучше использовать конденсаторы, которые изначально предназначены для такого использования, например К73-17, CL21, X2
На фото конденсатор CL21

А это более надежный вариант, не смотрите что на нем указано 280 Вольт, у него это значение переменного действующего напряжения и он будет работать надежнее, чем К73-17 или CL21.

Такие конденсаторы могут выглядеть и так

А вот теперь можно еще раз внимательно посмотреть, что надо для того, чтобы собрать такой «простой» блок питания и решить, нужен ли он.
В некоторых ситуациях да, он поможет, но он имеет кучу минусов, потому на мой взгляд лучше применить просто небольшой импульсный блок питания, который уже имеет стабилизированное выходное напряжение, гальваническую изоляцию и больший выходной ток.
Как пример таких блоков питания я могу дать ссылку на подробный обзор четырех вариантов, с тестами, схемами и осмотров.

Но можно поступить еще лучше. Сейчас получили распространение монолитные блоки питания. По сути кубик, в котором находится миниатюрный БП
Например HLK-PM01 производства Hi-link, стоимостью около двух долларов за штуку.

Или их китайский аналог TSP-05 производства Tenstar robot. Они немного дешевле, 1.93 доллара за штуку.
Практика показала, что качество у них сопоставимое.

Как я писал выше, они представляют из себя импульсный Бп в модульном исполнении. БП в пластмассовом корпусе залитый эпоксидной смолой.
Выпускаются на разные напряжения и способны поддерживать его на довольно стабильном уровне.

Внутренности поближе, на фото вариант от Hi-link

На этом вроде все. Надеюсь, что статья была полезна, постараюсь и в будущем находить интересные темы. Также интересны пожелания, что хотелось бы видеть в рубрике — Начинающим.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *