Когда фипи выпустит сборники егэ 2022
Перейти к содержимому

Когда фипи выпустит сборники егэ 2022

  • автор:

Варианты ЕГЭ по химии 2023/2024

Решаем задания ЕГЭ-2024 по химии из демо-варианта и разбираем изменения: какие вопросы добавили, какие убрали и что усложнили. Разбор второй части демоверсии на нашем YouTube-канале.

Демоверсия ЕГЭ-2024 39 заданий

Вариант №1 (основная волна 2023) 34 задания
Вариант №2 (основная волна 2023) 34 задания
Вариант №3 (основная волна 2023) 34 задания
Вариант №4 (основная волна 2023) 34 задания
Вариант №5 (основная волна 2023) 34 задания

Демоверсия ЕГЭ-2023 39 заданий

Досрочный вариант 1 34 задания

Досрочный вариант 2 34 задания

Досрочный вариант 3 34 задания
Досрочный вариант 4 34 задания
Тренировочный вариант МЦКО (2023) 34 задания

Дацук и Степенин. Варианты ЕГЭ-2024

В течение 2023/2024 учебного годы мы будем выкладывать здесь наши варианты ЕГЭ-2024 по химии.

Вариант 1 34 задания

Вариант 2 34 задания

Вариант 3 34 задания

Вариант 4 34 задания

Вариант 5 34 задания

Вариант 6 34 задания

Вариант 7 34 задания

Вариант 8 34 задания

Вариант 9 34 задания

Вариант 10 34 задания

Вариант 11 34 задания

Вариант 12 34 задания

Вариант 13 34 задания

Вариант 14 34 задания

Вариант 15 34 задания

Вариант 16 34 задания

Вариант 17 34 задания

Вариант 18 34 задания

Вариант 19 34 задания

СтатГрад

Варианты ЕГЭ по химии от Статграда 2024 года обычно сложнее стандартных вариантов ФИПИ и могут содержать значительные отклонения от официальных требований. На протяжении учебного года Статград выпускает несколько подборок своих вариантов по разным предметам. Довольно часто в школе по таким вариантам проводят диагностику учащихся.

5 февраля 2024 Пробник ЕГЭ по математике 11 класс 6 вариантов с ответами ФИПИ

Тренировочные варианты ЕГЭ 2024 задания и ответы

Пробный ЕГЭ 2024 по математике 11 класс профильный уровень 6 тренировочных вариантов (№235, №236, №237, №238, №239, №240) для проведения собраны из открытого банка заданий ФИПИ и экзаменов прошлого года с ответами и решением для подготовки к экзамену. Каждый вариант соответствует официальной демоверсии 2024 года. Ответы и решения для заданий опубликованы в конце каждого варианта!

Решать вариант 235 ЕГЭ 2024 по математике 11 класс

Вариант 236

Вариант 237

Вариант 238

Вариант 239

Вариант 240

Задания и ответы с 1 варианта

1. Угол A четырехугольника ABCD, вписанного в окружность, равен 58°. Найдите угол C этого четырехугольника. Ответ дайте в градусах.

Ответ: 122

3. В сосуд, имеющий форму правильной треугольной призмы, налили воду. Уровень воды достигает 80 см. На какой высоте будет находиться уровень воды, если ее перелить в другой такой же сосуд, у которого сторона основания в 4 раза больше, чем у первого? Ответ выразите в см.

Ответ: 5

4. Фабрика выпускает сумки. В среднем 8 сумок из 100 имеют скрытые дефекты. Найдите вероятность того, что купленная сумка окажется без дефектов.

Ответ: 0,92

5. Вероятность того, что батарейка бракованная, равна 0,06. Покупатель в магазине выбирает случайную упаковку, в которой две таких батарейки. Найдите вероятность того, что обе батарейки окажутся исправными.

Ответ: 0,8836

10. Из пункта A круговой трассы выехал велосипедист. Через 30 минут он ещё не вернулся в пункт А и из пункта А следом за ним отправился мотоциклист. Через 10 минут после отправления он догнал велосипедиста в первый раз, а еще через 30 минут после этого догнал его во второй раз. Найдите скорость мотоциклиста, если длина трассы равна 30 км. Ответ дайте в км/ч.

Ответ: 80

14. В правильной четырёхугольной призме ABCDA1B1C1D1 основание ABCD — квадрат. Точка M — центр боковой грани BCC1B1. а) Докажите, что плоскость A1D1M делит диагональ AC1 в отношении 2 : 1, считая от точки A. б) Найдите расстояние от точки M до прямой BD1, если сторона основания призмы равна 6, а боковое ребро равно 3.

Ответ: корень из 5

16. По вкладу А банк в конце каждого года планирует увеличивать на 20% сумму, имеющуюся на вкладе в начале года, а по вкладу Б—увеличивать эту сумму на 10% в первый год и на одинаковое целое число n процентов и за второй, и за третий годы. Найдите наименьшее значение n, при котором за три года хранения вклад Б окажется выгоднее вклада А при одинаковых суммах первоначальных взносов.

Ответ: 26

17. Точка O — центр окружности, описанной около остроугольного треугольника ABC, I — центр вписанной в него окружности, H — точка пересечения высот. Известно, что ∠ВAC = ∠ОBС + ∠ОСB. а) Докажите, что точка I лежит на окружности, описанной около треугольника BOC. б) Найдите угол OIH, если ∠ABС = 75°.

Ответ: 165 градусов

19. Натуральные числа от 1 до 12 разбивают на четыре группы, в каждой из которых есть по крайней мере два числа. Для каждой группы находят сумму чисел этой группы. Для каждой пары групп находят модуль разности найденных сумм и полученные 6 чисел складывают. а) Может ли в результате получиться 0? б) Может ли в результате получиться 1? в) Каково наименьшее возможное значение полученного результата?

Ответ: а-нет, б-нет, в-4

Задания и ответы с 2 варианта

1. Основания равнобедренной трапеции равны 43 и 73. Косинус острого угла трапеции равен 5 7 . Найдите боковую сторону.

Ответ: 21

2. В равнобедренном прямоугольном треугольнике ABC с прямым углом C известно, что AB 7 2. Найдите скалярное произведение векторов BA и CB.

Ответ: -49

3. В цилиндрический сосуд налили 2000 см3 воды. Уровень жидкости оказался равным 12 см. В воду полностью погрузили деталь. При этом уровень жидкости в сосуде поднялся на 9 см. Чему равен объем детали? Ответ выразите в см3 .

Ответ: 1500

4. На рисунке изображён лабиринт. Паук заползает в лабиринт в точке «Вход». Развернуться и ползти назад паук не может, поэтому на каждом разветвлении паук выбирает один из путей, по которому ещё не полз. Считая, что выбор дальнейшего пути чисто случайный, определите, с какой вероятностью паук придёт к выходу D.

Ответ: 0,0625

5. Если шахматист А. играет белыми фигурами, то он выигрывает у шахматиста Б. с вероятностью 0,52. Если А. играет черными, то А. выигрывает у Б. с вероятностью 0,3. Шахматисты А. и Б. играют две партии, причём во второй партии меняют цвет фигур. Найдите вероятность того, что А. выиграет оба раза.

Ответ: 0,156

10. Петя и Ваня выполняют одинаковый тест. Петя отвечает за час на 8 вопросов текста, а Ваня — на 9. Они одновременно начали отвечать на вопросы теста, и Петя закончил свой тест позже Вани на 20 минут. Сколько вопросов содержит тест?

Ответ: 24

14. В правильной треугольной пирамиде SABC сторона основания AB равна 30, а боковое ребро SA равно 28. Точки M и N — середины рёбер SA и SB соответственно. Плоскость α содержит прямую MN и перпендикулярна плоскости основания пирамиды. а) Докажите, что плоскость α делит медиану CE основания в отношении 5 : 1, считая от точки C. б) Найдите объём пирамиды, вершиной которой является точка C, а основанием — сечение пирамиды SABC плоскостью α.

16. В начале года Алексей приобрёл ценные бумаги на сумму 9 тыс. рублей. В середине каждого года стоимость ценных бумаг возрастает на 2 тыс. рублей. В любой момент Алексей может продать ценные бумаги и положить вырученные деньги на банковский счёт. В середине каждого года сумма на счёте будет увеличиваться на 9%. В начале какого года после покупки Алексей должен продать ценные бумаги, чтобы через двадцать лет после покупки ценных бумаг сумма на банковском счёте была наибольшей?

Ответ: 8

17. В треугольнике ABC проведены биссектрисы AA1 и CC1, точки K и M — основания перпендикуляров, опущенных из точки B на прямые AA1 и CC1. а) Докажите, что MK AC. б) Найдите площадь треугольника KBM, если AC = 10, BC = 6, AB = 8.

Ответ: 2,4

19. Семь экспертов оценивают кинофильм. Каждый из них выставляет оценку — целое число баллов от 0 до 10 включительно. Известно, что все эксперты выставили различные оценки. По старой системе оценивания рейтинг кинофильма — это среднее арифметическое всех оценок экспертов. По новой системе оценивания рейтинг кинофильма вычисляется следующим образом: отбрасываются наименьшая и наибольшая оценки и подсчитывается среднее арифметическое пяти оставшихся оценок.

Задания и ответы с 3 варианта

3. Боковые ребра треугольной пирамиды взаимно перпендикулярны, каждое из них равно 3. Найдите объем пирамиды.

Ответ: 4,5

4. В случайном эксперименте бросают три игральные кости. Найдите вероятность того, что сумма выпавших очков равна 16. Результат округлите до сотых.

Ответ: 0,03

5. По отзывам покупателей Иван Иванович оценил надёжность двух интернет-магазинов. Вероятность того, что нужный товар доставят из магазина А, равна 0,8. Вероятность того, что этот товар доставят из магазина Б, равна 0,9. Иван Иванович заказал товар сразу в обоих магазинах. Считая, что интернет-магазины работают независимо друг от друга, найдите вероятность того, что ни один магазин не доставит товар.

Ответ: 0,02

10. Смешав 30-процентный и 60-процентный растворы кислоты и добавив 10 кг чистой воды, получили 36-процентный раствор кислоты. Если бы вместо 10 кг воды добавили 10 кг 50- процентного раствора той же кислоты, то получили бы 41- процентный раствор кислоты. Сколько килограммов 30- процентного раствора использовали для получения смеси?

Ответ: 60

16. 31 декабря 2014 года Алексей взял в банке 6 902 000 рублей в кредит под 12,5% годовых. Схема выплат кредита следующая—31 декабря каждого следующего года банк начисляет проценты на оставшуюся сумму долга (т. е. увеличивает долг на 12,5%), затем Алексей переводит в банк x рублей. Какой должна быть сумма x, чтобы Алексей выплатил долг четырьмя равными платежами (т. е. за четыре года)?

Ответ: 2296350

Задания и ответы с 4 варианта

3. Цилиндр и конус имеют общие основание и высоту. Высота цилиндра равна радиусу основания. Площадь боковой поверхности конуса равна 27 2. Найдите площадь боковой поверхности цилиндра.

Ответ: 54

4. Механические часы с двенадцатичасовым циферблатом в какой-то момент сломались и перестали ходить. Найдите вероятность того, что часовая стрелка застыла, достигнув отметки 10, но не дойдя до отметки 1 час.

Ответ: 0,25

5. Перед началом волейбольного матча капитаны команд тянут честный жребий, чтобы определить, какая из команд начнёт игру с мячом. Команда «Статор» по очереди играет с командами «Ротор», «Мотор» и «Стартер». Найдите вероятность того, что «Статор» будет начинать только первую и последнюю игры.

Ответ: 0,125

10. Первый сплав содержит 10% меди, второй — 40% меди. Масса второго сплава больше массы первого на 3 кг. Из этих двух сплавов получили третий сплав, содержащий 30% меди. Найдите массу третьего сплава. Ответ дайте в килограммах.

Ответ: 9

16. В двух областях есть по 160 рабочих, каждый из которых готов трудиться по 5 часов в сутки на добыче алюминия или никеля. В первой области один рабочий за час добывает 0,1 кг алюминия или 0,3 кг никеля. Во второй области для добычи x кг алюминия в день требуется x 2 человеко-часов труда, а для добычи y кг никеля в день требуется y 2 человеко-часов труда. Для нужд промышленности можно использовать или алюминий, или никель, причём 1 кг алюминия можно заменить 1 кг никеля. Какую наибольшую массу металлов можно за сутки суммарно добыть в двух областях?

Ответ: 280

19. В последовательности из 80 целых чисел каждое число (кроме первого и последнего) больше среднего арифметического соседних чисел. Первый и последний члены последовательности равны 0. а) Может ли второй член такой последовательности быть отрицательным? б) Может ли второй член такой последовательности быть равным 20? в) Найдите наименьшее значение второго члена такой последовательности.

Ответ: а-нет, б-нет, в-39

Задания и ответы с 5 варианта

1. Около окружности, радиус которой равен 3, описан многоугольник, площадь которого равна 33. Найдите его периметр.

3. Объем правильной четырехугольной пирамиды SABCD равен 12. Точка E — середина ребра SB. Найдите объем треугольной пирамиды EABC.

4. Какова вероятность того, что номера двух случайно выбранных паспортов оканчиваются одной и той же цифрой?

5. Игральную кость бросили два раза. Известно, что три очка не выпали ни разу. Найдите при этом условии вероятность события «сумма выпавших очков окажется равна 8».

10. Два человека отправляются из одного и того же места на прогулку до опушки леса, находящейся в 4,4 км от места отправления. Один идёт со скоростью 2,5 км/ч, а другой — со скоростью 3 км/ч. Дойдя до опушки, второй с той же скоростью возвращается обратно. На каком расстоянии от точки отправления произойдёт их встреча?

16. Алина Алексеевна взяла в кредит 1,8 млн. рублей на 36 месяцев. По договору Алина Алексеевна должна возвращать банку часть денег в конце каждого месяца. Каждый месяц общая сумма долга возрастает на 3%, а затем уменьшается на сумму, уплаченную Алиной Алексеевной банку в конце месяца. Суммы, выплачиваемые Алиной Алексеевной, подбираются так, чтобы сумма долга уменьшалась равномерно, то есть на одну и те же величину каждый месяц. На сколько рублей больше Алина Алексеевна вернет банку в течение первого года кредитования по сравнению с третьим годом?

Задания и ответы с 6 варианта

1. Найдите площадь прямоугольного треугольника, если его катет и гипотенуза равны соответственно 6 и 10.

2. В параллелограмме ABCD известны координаты трёх вершин: А (0; 0), В (5; 0), С (12; 3). Найдите координаты вершины D. В ответ запишите сумму координат точки D.

3. Найдите объем V части цилиндра, изображенной на рисунке. В ответе укажите V π .

4. Из районного центра в деревню ежедневно ходит автобус. Вероятность того, что в понедельник в автобусе окажется меньше 20 пассажиров, равна 0,94. Вероятность того, что окажется меньше 15 пассажиров, равна 0,56. Найдите вероятность того, что число пассажиров будет от 15 до 19.

5. При двукратном бросании игральной кости в сумме выпало 9 очков. Какова вероятность того, что хотя бы раз выпало 5 очков?

10. Семья состоит из мужа, жены и их дочери студентки. Если бы зарплата мужа увеличилась вдвое, общий доход семьи вырос бы на 67%. Если бы стипендия дочери уменьшилась втрое, общий доход семьи сократился бы на 4%. Сколько процентов от общего дохода семьи составляет зарплата жены?

16. Светлана Михайловна взяла кредит в банке на 4 года на сумму 4 420 000 рублей. Условия возврата кредита таковы: в конце каждого года банк увеличивает текущую сумму долга на 10 %. Светлана Михайловна хочет выплатить весь долг двумя равными платежами ― в конце второго и четвертого годов. При этом платежи в каждом случае выплачиваются после начисления процентов. Сколько рублей составит каждый из этих платежей?

17. На сторонах AB и BC треугольника ABC отмечены точки M и N так, что АМ : МВ = CN : NB = 1 : 2. Прямая MN касается окружности, вписанной в треугольник ABC в точке L. a) Докажите, что AB + BC = 5 AC. б) Найдите радиус окружности, вписанной в треугольник ABC, если ML = 1 и LN = 3.

Новые тренировочные варианты ЕГЭ 2024 по математике

Рособрнадзор и ФИПИ выпустили аудиоматериалы по подготовке к ЕГЭ

Рособрнадзор и Федеральный институт педагогических измерений (ФИПИ) выпустили серию аудиоматериалов, из которых одиннадцатиклассники смогут узнать: что нужно знать и уметь для успешной сдачи ЕГЭ по предмету, как лучше организовать подготовку, какими ресурсами пользоваться, как эффективно распределить время на экзамене и многое другое.

Как сообщается на официальной странице Рособрнадзора во «ВКонтакте», аудиоподкаст поможет сделать подготовку к ЕГЭ более удобной. Все подготовленные материалы проекта «ЕГЭ на все 100!» размещены на всех популярных медиаплатформах и доступны для прослушивания дома, на прогулке или во время занятий спортом. Послушать материалы можно – во «ВКонтакте» и Яндекс Музыке, посмотреть видеоверсию – во «ВКонтакте» и на Rutube.

Проект представляет собой 11 материалов, содержащих полезную информацию по каждому предмету, особенностях проведения экзамена в 2023 году, разбор примеров и сложных моментов, а также советы ведущих экспертов и ответы на самые частые вопросы.

Стоит добавить, что в Рособрнадзоре уделяют особое внимание подготовке школьников к ЕГЭ. Так, уже стали традицией онлайн-консультации «На все 100!», на которые приглашают разработчиков контрольных измерительных материалов из Федерального института педагогических измерений (ФИПИ). Осенью прошлого года прошла серия онлайн-консультаций, на которых разбирались изменения в заданиях к экзаменам.

Тексты итогового собеседования 9 февраля

Выдающийся пловец Владимир Валерьевич Сальников вписал своё имя в историю отечественного спорта, установив более 20 рекордов, 13 из которых мирового уровня. «Монстр в воде», «железный человек», «машина для рекордов», «великий Сальников» — подобных эпитетов за свою спортивную карьеру он заслужил немало.

А начиналось всё в небольшой новгородской деревушке, где каждое лето Володя отдыхал у бабушки. Тайком от неё он бегал с деревенскими мальчишками на дикие пляжи. Плавать тогда он ещё не умел, поэтому плескался на мелководье около берега и очень завидовал своим одногодкам, которые умели плавать.

Судьбе было угодно, чтобы в школу, где учился Владимир, пришёл тренер по плаванию и предложил всему классу стать пловцами. Правда, записывать всех подряд он не спешил, а предложил выполнить ряд упражнений. Сальников успешно с ними справился и был зачислен в спортивную секцию.

За время своей спортивной карьеры Владимир Сальников преодолел дистанцию, равную длине экватора. Благодаря трудолюбию, силе воли, умению преодолевать трудности он не проиграл с 1977 по 1986 год ни одного мирового первенства на дистанции 1500 метров вольным стилем. Рекорд мира, установленный спортсменом в 1983 году, продержался восемь лет.

Многие годы на зимних Олимпийских играх советские лыжники ни разу не побеждали в эстафете: лыжные гонки оставались словно заколдованными для сборной. И только на XI зимней Олимпиаде 1972 года эта традиция была нарушена. Героем мужской лыжной команды стал Вячеслав Петрович Веденин.

К концу третьего этапа соревнования разрыв между сборной Норвегии и сборной СССР достиг целой минуты. Когда эстафета была передана Веденину, норвежский лыжник уже успел скрыться в лесу, куда уходила лыжня. Последнее, что услышал Вячеслав Веденин от тренеров, устремляясь в погоню: «Не упустить теперь хотя бы серебро».

Отыграть на этапе в десять километров целую минуту было практически невозможно. Понимая это, норвежские лыжники уже праздновали победу. А Вячеслав Веденин между тем отыгрывал секунду за секундой. Впереди предстояли два подъёма и два спуска. На одном из них уже за километр до финиша Веденин обошёл норвежца, который просто не мог поверить в случившееся. Веденин опередил его на 9,12 секунды. Олимпийскими чемпионами в эстафете стали советские лыжники. Это была настоящая победа советского спорта!

Помнят победу Веденина на зимней Олимпиаде и на его родине -в Тульской области. В последнюю субботу января проходят ежегодные соревнования в его честь — «Лыжня Веденина».

О тактике бега на длинные дистанции Владимир Куц получил некоторое представление лишь после того, как случайно прочитал в журнале статью об одном из известных в ту пору советских легкоатлетов.

Весной 1951 года в Сочи он случайно встретился с тренером бегунов Леонидом Хоменковым. Тот специально составил для Куца план тренировок, и уже через год атлет стал чемпионом Советского Союза на дистанциях 5000 и 10 000 метров.

Первое выступление Владимира Петровича Куца на Олимпиаде состоялось 23 ноября 1956 года. В этом забеге бесспорными фаворитами были двое: Владимир Куц и англичанин Гордон Пири. Большинство профессионалов отдавало своё предпочтение англичанину, который незадолго до Олимпиады в очном поединке не только обогнал Куца на дистанции 5000 метров, но и отобрал у него мировой рекорд. Но на этот раз всё получилось иначе: Владимир Куц пробежал 10 000 метров за рекордное время. А его главный соперник Пири пересёк финишную черту только восьмым. Англичанин был сильно измотан, еле дышал, в то время как Куц сумел пробежать ещё целый «круг почёта».

Позднее Владимир Куц окончил институт физкультуры, чтобы стать тренером, и с 1961 года начал тренировать в Москве бегунов ЦСКА.

Пётр Петрович Семёнов-Тян-Шанский — знаменитый русский географ, президент Русского энтомологического г общества, почётный член Императорской академии наук. Родившись в семье военного и окончив Школу юнкеров, Пётр Семёнов мог сделать блестящую военную карьеру, но, увлёкшись географией и ботаникой, предпочёл науку.

В то время географию Центральной Азии называли «географией догадок», поскольку её изучение было чисто теоретическим. Досконально изучив особенности гор по книгам, Семёнов отправился в Азию исследовать Тянь-Шань. В ходе экспедиций 1856 и 1857 годов он обследовал 23 горных перевала, определил высоты 50 вершин, собрал около 300 образцов горных пород и, наконец, опроверг старые представления о вулканическом происхождении Тянь-Шаня.

Возглавляя Русское географическое общество с 1873 по 1914 год, Пётр Петрович помогал организовывать исследовательские экспедиции, в одной из которых принимал участие Николай Михайлович Пржевальский. Учёному принадлежит ряд уникальных трудов по географии и энтомологии — науки, изучающей насекомых.

Семёнов был весьма разносторонним человеком: собрал уникальную коллекцию картин, которую завещал Эрмитажу; в 1897 году инициировал проведение первой в России переписи населения. В честь 50-летия экспедиции на Тянь-Шань Николай II повелел добавить к фамилии Семёнова Тян-Шанский. В честь выдающегося учёного были названы многие географические объекты в Средней и Центральной Азии, на Аляске, Кавказе.

Дмитрий Николаевич Овсянико-Куликовский — известный историк культуры, критик и лингвист. Область научных интересов учёного весьма обширна: он занимался исследованием русской грамматики, изучал древние языки, анализировал творчество великих русских писателей. Его подход к языковому и литературоведческому анализу отличался глубиной и психологизмом.

В 1902 году Овсянико-Куликовский написал знаменитую книгу «Синтаксис русского языка», в которой в общедоступной форме дал анализ синтаксической системы русского языка. Учёный мир высоко оценил этот труд. А в литературоведческих исследованиях учёный сосредоточился на проблемах психологии творчества.

Николай Дмитриевич был удивительно разносторонним человеком: до тонкостей разбирался и в сельском хозяйстве, и в социальных науках, и в медицине, и в биологии. Он хорошо знал и любил энтомологию (науку о насекомых). Учёный был увлечён и музыкой. В одном из своих южнорусских имений содержал огромный оркестр, который ничем не уступал лучшим оркестрам Европы. И сам Николай Дмитриевич с этим оркестром неоднократно исполнял лучшие сочинения современников -отечественных и европейских композиторов, а также собственные. В 1909 году Николай Дмитриевич передал свой оркестр открывшемуся только что Одесскому оперному театру.

Дмитрий Николаевич был добрым, мягким, гуманным человеком, с которым, по словам его коллег и студентов, было легко работать.

Юрий Александрович Сенкевич с детства зачитывался приключенческими романами, любил море и походы. По примеру родителей он выбрал профессию врача: окончил Военно-медицинскую академию и стал сотрудником Института космической и авиационной медицины. Сенкевич готовился к полёту в космос, но принял предложение поработать на полярной станции в Антарктике, где в суровых условиях провёл более года.

Следующим непростым путешествием Юрия Александровича была экспедиция через Атлантический океан на папирусной лодке под руководством знаменитого норвежского археолога Тура Хейердала. Её целью было доказать, что и в древности люди могли совершать кругосветные путешествия. Но непрочное судно развалилось на части незадолго до окончания плавания, а люди были эвакуированы. Цель была достигнута только со второй попытки, которая состоялась через год.

После опасных морских путешествий Юрия Сенкевича пригласили стать ведущим телевизионной программы «Клуб путешественников». Его сразу полюбили зрители. Сенкевич ввёл в программу интересные рубрики, рассказывал о малых городах нашей страны. Съёмочная группа передачи поднялась на Эверест, побывала в пустынях Африки и во льдах Северного полюса.

Передача «Клуб путешественников» попала в Книгу рекордов Гиннесса как самая долгая на телевидении: она выходила в эфир более 40 лет, было подготовлено около 2000 выпусков. Поставит рекорд и сам Юрий Сенкевич как телеведущий с непрерывной 30-летней карьерой. В честь учёного названы самолёт и корабль, создан музей в Москве.

Генрих Иванович Турнер, целеустремлённый и неутомимый хирург, талантливый организатор, оставил яркий след в медицинской науке. На протяжении 60 лет гениальный врач и учёный успешно развивал мировую медицину, обогащая её бесценным опытом.

В 1881 году Турнер окончил Медико-хирургическую академию и начал работать в хирургическом отделении военного госпиталя в Санкт-Петербурге, где приобрёл важный практический опыт и заинтересовался наукой. В госпитале Генрих Иванович овладел основами хирургического лечения болезней опорно-двигательного аппарата, что сыграло важную роль для всей его последующей деятельности. Научные работы и клинические исследования выдающегося хирурга почти целиком посвящены именно ортопедической тематике. Турнер включил ортопедию в программу обучения в Военно-медицинской академии и закрепил этим повсеместное признание этой новой отрасли хирургии.

Широкую известность Турнеру принесло его общественное служение: он активно занимался популяризацией среди населения знаний по профилактике заболеваний, травм и приёмов оказания первой помощи пострадавшим. Его книга «Наложение повязок» выдержала шесть изданий.

Много сил хирург отдал оказанию помощи детям, страдающим тяжёлыми заболеваниями, восстановлению трудоспособности детей-инвалидов. В Санкт-Петербурге он руководил работой специализированного детского приюта, который впоследствии преобразовали в Научно-исследовательский институт имени Турнера. По инициативе хирурга было создано Ленинградское общество детских ортопедов. Профессор Турнер был избран почётным членом Британской ортопедической ассоциации, членом-корреспондентом Американской академии хирургов.

Начиная с 1962 года три Олимпиады подряд в личном многоборье гимнастов победу одерживали спортсмены из Японии: этот период даже называли «японская эра». Только в 1976 году на XXI Олимпийских играх абсолютным чемпионом по гимнастике стал советский спортсмен Николай Ефимович Андрианов.

Сообщения о триумфе советского гимнаста немедленно появились на первых полосах газет всего мира. Например, писали о том, что «этот скромный и серьёзный парень из России смог нарушить гегемонию японских гимнастов», которые никому не отдавали абсолютного первенства на предшествующих Олимпиадах. Андрианов продемонстрировал удивительные силу и технику. Не случайно он опередил следующего за ним Савао Като на целый балл.

Четыре года спустя он был в числе тех советских гимнастов, которые выиграли наконец и командное олимпийское первенство. Первую же из своих золотых олимпийских медалей — за победу в вольных упражнениях -Андрианов завоевал ещё на Олимпиаде в 1972 году. Все три Олимпиады, на которых Андрианов поднимался на высшую ступень пьедестала, принимая очередную золотую медаль, становились особыми и для древнего русского города Владимира. Город болел за своего земляка.

Закончив выступления в большом спорте, Николай Андрианов занимался тренерской работой, возглавлял спортивную детско-юношескую школу во Владимире, был вице-президентом Федерации спортивной гимнастики России.

Метательница диска Нина Аполлоновна Пономарёва стала известна в спортивном мире после чемпионата страны по лёгкой атлетике в 1949 году: третье место неожиданно для всех заняла дебютантка Нина, учившаяся тогда в Ставропольском педагогическом институте. Огромную роль в её спортивной карьере сыграл тренер Дмитрий Петрович Марков.

С 1952 по 1959 год Нина Пономарёва была чемпионкой страны. Она стала одной из немногих в истории мирового спорта легкоатлеток, которой довелось выступать на четырёх Олимпиадах. На Олимпиаде в Хельсинки Нина Пономарёва стала первой советской олимпийской чемпионкой. В этой победе много символичного. Девушка с отчеством Аполлоновна стала лучшей на планете в древнем виде состязаний, входившем в программу античных Олимпийских игр: по одному из мифов, сам Аполлон соревновался в метании диска.

На Олимпийских играх 1960 года она во второй раз стала чемпионкой, установив олимпийский рекорд — 55 метров 10 сантиметров.

Нина Аполлоновна носила уникальный титул первой в истории советского спорта олимпийской чемпионки. Счёт золотых олимпийских медалей начинается с её награды 1952 года. И сколько бы ни было впереди Олимпиад, сколько бы мы ни узнавали новых имён чемпионов, мы всегда будем помнить, что первой была Пономарёва!

Всю жизнь Лев Владимирович Щёрба посвятил служению науке. В историю лингвистики Щерба вошёл прежде всего как выдающийся специалист по фонетике. Ещё в дореволюционные годы он возглавил в Петербургском университете фонетическую лабораторию. Она существует и в настоящее время и названа в честь Льва Владимировича Щербы. Также он стал основателем ленинградской фонологической школы. В 1924 году Щерба был избран членом-корреспондёнтом Академии наук СССР.

Существенный вклад в изучение русского языка внесла статья Льва Владимировича «О частях речи в русском языке», в которой анализировались особенности частей речи. В 1928 году вышел «Русско-французский словарь», который до сих пор используется в практике преподавания и переводов. Также Лев Владимирович предложил первую в отечественном языкознании научную типологию словарей.

Щерба ввёл в научный обиход термины «лингвистический эксперимент» и «отрицательный языковой материал». Значение последнего термина заключается в том, что учёный должен обращать внимание на неправильное произношение и употребление слов.

Лев Владимирович Щерба известен как автор школьного учебника по русскому языку. Он создал первые учебные программы для начальной и средней школы, разработал принципы построения школьных учебников. В лингвистике учёный поставил ряд вопросов, которые сохраняют актуальность и в наши дни.

Александр Алексеевич Ханжонков — один из родоначальников русского кинематографа, создатель первой кинофабрики в России. Александр Алексеевич получил хорошее военное образование, был произведён в офицеры. Однако вскоре после русско-японской войны он по состоянию здоровья уволился из армии. На полученные при уходе с военной службы 5000 рублей он открыл кинопрокатную фирму — закупал за границей кинофильмы и продавал их российским кинотеатрам. Со временем он пришёл к выводу, что интереснее развивать российское кинопроизводство. Так появилась знаменитая в истории кинофабрика Ханжонкова.

На работу к Александру Алексеевичу приходили знаменитые режиссёры и актёры, впоследствии ставшие легендами мирового кино. В 1911 году был выпущен в прокат первый в мире полнометражный фильм «Оборона Севастополя». Ханжонков выступил в роли автора сценария и сорежиссёра этого фильма.

Благодаря Александру Алексеевичу в России появилось научно-популярное и учебное кино. В студии Ханжонкова существовал специальный научный отдел, который выпускал по несколько просветительских фильмов в год. Примечательно, что в кинотеатрах показы этих картин для учащихся средних учебных заведений были бесплатными.

За время своей работы Ханжонков выпустил более 600 игровых и документальных фильмов. На кинофабрике Ханжонкова был снят и первый в мире мультипликационный фильм. На базе его кинофабрики возникли Ялтинская киностудия и «Мосфильм».

Надежда Прокофьевна Суслова родилась в крестьянской семье. Отец Надежды настоял на образовании дочери: её отправили учиться в московскую школу-пансион. Образованная крестьянка — это для России середины XIX века было чудом. Надежда очень много читала, публиковала небольшие рассказы, была знакома с писателем Достоевским.

Но её настоящей страстью была медицина. В царской России для женщин были закрыты двери всех университетов, и только в Медицинской академии знаменитые российские врачи Боткин и Сеченов разрешили женщинам посещать лекции. Именно эти лекции посещала Надежда Прокофьевна. Суслова училась с наслаждением, работала в лаборатории; в медицинских журналах печатались её статьи. Но вскоре царское правительство окончательно запретило обучение женщин, и Надежде Прокофьевне пришлось продолжить учёбу в Швейцарии.

Защитив диссертацию и получив первой из российских женщин швейцарский диплом хирурга-акушёра, Суслова вернулась в Россию. Она с трудом добилась подтверждения своего диплома и признания её врачом. В медицинские учреждения на службу её не принимали, и Надежда Прокофьевна начала работать частным практикующим доктором. Она лечила людей, писала научные работы.

Надежда Прокофьевна стала первой российской женщиной-врачом. Уважение коллег-мужчин, которое снискала Надежда Прокофьевна, сломало барьер, преграждавший женщинам путь в медицину. Преодолевая все препятствия, она проложила дорогу другим женщинам, которые последовали её примеру.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *