Как найти сумму всех двузначных чисел
Перейти к содержимому

Как найти сумму всех двузначных чисел

  • автор:

Найти сумму двузначных чисел. Арифметическая и геометрическая прогрессия №67 Алгебра 9 класс Мордкович А.Г.

Привет, ищем сумму
Решение:

похожие темы

2985 вопросов
3273 ответа

8508 вопросов
8707 ответов

9692 вопроса
9977 ответов

3992 вопроса
4060 ответов
похожие вопросы 5
Любовь Архангельская
Пожаловаться

10. При каких значениях р уравнение -х 2 + 6х — 2 = р:
а) не имеет корней;
б) имеет один корень; ( Подробнее. )

ГДЗ Мордкович А.Г. Алгебра 8 класс
Богдана Брюнеточкина
Пожаловаться

Совсем я в точных науках не сильна) Кто поможет?) Найдите значения аргумента из промежутка [-2; 5], при которых скорость изменения ( Подробнее. )

16.45. а) Найдите сумму всех двузначных чисел, кратных 7. б) Найдите сумму всех двузначных чисел, которые при делении на 5 дают в остатке 2.

ГДЗ к Задачнику по Алгебре за 9 класс (А.Г. Мордкович и др.)

Решебник по алгебре за 9 класс (А.Г. Мордкович, Л.А. Александрова, Т.Н. Мишустина и др., 2010 год),
задача №16.45.
к главе «§16. Арифметическая прогрессия».

Раздел 2. № 65. ГДЗ Алгебра 9 класс Кузнецова. Помогите найти сумму.

65.1. Рассмотрим последовательность двузначных натуральных чисел
n): 10, 11, . 99.
a1=10, аn=99 и d=1.
Т. к. всего чисел от 10 до 99 — 90 штук, то

Ответ: сумма всех двузначных чисел равна 4905.

65.2. Рассмотрим последовательность всех трехзначных чисел (аn): 100, 111, . 999.
а1 =100, аn =999 и d=1.
т. к. всего чисел от 100 до 999 — 900 штук, то

Ответ: сумма всех трехзначных чисел равна 494550.

ГДЗ учебник по математике 4 класс Петерсон. 13 урок. Деление на двузначное и трехзначное число. Номер №10

Найди сумму всех возможных двузначных чисел, все цифры которых нечетные.

reshalka.com

ГДЗ учебник по математике 4 класс Петерсон. 13 урок. Деление на двузначное и трехзначное число. Номер №10

Решение

Выпишем все числа, все цифры которых нечетные:
11, 13, 15, 17, 19,
31, 33, 35, 37, 39,
51, 53, 55, 57, 59,
71, 73, 75, 77, 79,
91, 93, 95, 97, 99 .
Тогда их сумма равна:
( 11 + 19 ) + ( 13 + 97 ) + ( 15 + 95 ) + ( 17 + 93 ) + ( 19 + 91 ) + ( 31 + 79 ) + ( 33 + 77 ) + ( 35 + 75 ) + ( 37 + 73 ) + ( 39 + 71 ) + ( 51 + 59 ) + ( 51 + 57 ) + 55 = 110 + 110 + 110 + 110 + 110 + 110 + 110 + 110 + 110 + 110 + 110 + 110 + 55 = 12 * 110 + 55 = 1320 + 55 = 1375

× 110 12 ¯ 220 110 0 1320 ¯

Ответ: 1375 − сумма всех двузначных чисел, все цифры которых нечетные.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *