Что такое синус в физике
Перейти к содержимому

Что такое синус в физике

  • автор:

1. Синус, косинус и тангенс угла

Vienibas_pusr.png

Как уже известно, в прямоугольном треугольнике синус острого угла определяется как отношение противолежащего катета к гипотенузе, а косинус острого угла определяется как отношение прилежащего катета к гипотенузе.

В треугольнике \(AOX\):
sin α = AX AO ; cos α = OX AO .
Так как радиус полуокружности \(R = AO = 1\), то sin α = AX ; cos α = OX .

Длина отрезка \(AX\) равна величине координаты \(y\) точки \(A\), а длина отрезка \(OX\) равна величине координаты \(x\) точки \(A\):

A cos α ; sin α .
Следовательно, для углов 0 ° ≤ α ≤ 180 ° видно, что − 1 ≤ cos α ≤ 1 ; 0 ≤ sin α ≤ 1 .

В прямоугольном треугольнике тангенс острого угла равен отношению противолежащего катета к прилежащему катету, а значит,

tg α = AX OX = sin α cos α .

Используя единичную полуокружность и рассмотренную информацию, определим синус, косинус и тангенс для 0 ° ; 90 ° ; 180 ° .

sin 0 ° = 0 ; cos 0 ° = 1 ; tg 0 ° = 0 ; sin 90 ° = 1 ; cos 90 ° = 0 ; tg 90 ° не существует ; sin 180 ° = 0 ; cos 180 ° = − 1 ; tg 180 ° = 0 .

Рассмотрим оба острых угла в треугольнике \(AOX\). Если вместе они образуют 90 ° , то оба выразим через α .

Vienibas_pusr2.png

Если sin α = AX AO ; cos α = OX AO , то sin 90 ° − α = OX AO ; cos 90 ° − α = AX AO .
Видим, что справедливы равенства:
cos 90 ° − α = sin α ; sin 90 ° − α = cos α .
Рассмотрим тупой угол, который также выразим через α .

Vienibas_pusr1.png

Справедливы следующие равенства:
sin 180 ° − α = sin α ; cos 180 ° − α = − cos α .
Эти формулы называются формулами приведения:
cos 90 ° − α = sin α ; sin 90 ° − α = cos α .
sin 180 ° − α = sin α ; cos 180 ° − α = − cos α .

Если в треугольнике \(AOX\) применить теорему Пифагора, получаем AX 2 + OX 2 = 1 . Заменив отрезки соответственно синусом и косинусом, мы напишем

Что такое синус в физике

VII Международный конкурс научно-исследовательских и творческих работ учащихся
Старт в науке

  • Главная
  • Список секций
  • Математика
  • Тригонометрия в физике.

Тригонометрия в физике.

Угрюмова А.К. 1
1 МКОУ СОШ№1 г. Карабаша
Банных Т.М. 1 Галиахметова О.А. 1
1 МКОУ СОШ№1 г. Карабаша Челябинской обл.

Автор работы награжден дипломом победителя III степени

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке «Файлы работы» в формате PDF

Многие из нас хотя бы раз в жизни задавались вопросом: зачем нужна тригонометрия? Впервые мы сталкиваемся с данным понятием в 8 классе при изучении темы «Соотношения между сторонами и углами прямоугольного треугольника». На этом этапе мы узнаем, что такое синус, косинус и тангенс. Перейдя в 9 класс, мы вновь возвращаемся к тригонометрии. Здесь вводится понятие единичная окружность, с помощью которой определяются функции улов. Перейдя же в 10 класс, мы снова сталкиваемся с тригонометрией и понимаем, что она стала посложнее: ввелось понятие радианная мера угла, появились тригонометрические уравнения и неравенства, а также стали изучаться графики тригонометрических функций. Таким образом, изучая весь этот материал, становится интересно посмотреть на практическую сторону тригонометрии. Для начала нужно сказать о том, что тригонометрия – это раздел математики, в котором изучаются тригонометрические функции и их использование в геометрии. Слово тригонометрия состоит из двух греческих слов: «trigwnon» — «треугольник» и «metrew» — «измерять», означает – «измерение треугольников». Именно эта задача – «измерение треугольников» или «решение треугольников», определение всех элементов треугольника по трем данным, с древнейших времен составила основу практических приложений тригонометрии. Сложно представить, но с этой наукой мы сталкиваемся не только на уроках математики, но и в нашей повседневной жизни. Многие из нас даже не подозревают, что тригонометрия нашла широкое применение в таких науках как физика, биология, химия, компьютерная графика, геодезия, океанология. Также большую роль тригонометрия играет в медицине и, на удивление, ее используют даже в музыке при описании звуковых волн.

Актуальность: Данная тема, бесспорно, является актуальной. Тригонометрия использовалась людьми за много лет до нашей эры, уже тогда без знания этой науки было невозможно построить дом, а астрономам не удавалось провести различные расчеты. Спустя тысячелетия ничего не изменилось, тригонометрия по-прежнему остается одной из самых нужных наук, поэтому ее основы должен знать каждый человек, для того чтобы производить расчеты и иметь представление о самых элементарных функциях, так как тригонометрия заставляет думать логически и концентрирует наше внимание.

Цель: Определение связи тригонометрии с окружающим миром.

1.Рассмотреть историю возникновения и развития тригонометрии.

2.Показать на примерах практическое применение тригонометрии в физике.

3.Раскрыть на примерах возможности использования тригонометрических функций.

Гипотеза: Большинство физических явлений природы, физиологических процессов, закономерностей в музыке и искусстве можно описать с помощью тригонометрии и тригонометрических функций.

  1. Теоретический анализ
  2. Проведение исследования

Практическая значимость: проект может использоваться в качестве теоретического курса в качестве дополнения, закрепления уже пройденного материала или на внеурочных занятиях.

1.История возникновения тригонометрии

Зачатки тригонометрии можно найти в математических рукописях древнего Египта, Вавилона и древнего Китая. 56-я задача из папируса Ринда (II тысячелетие до н. э.) предлагает найти наклон пирамиды, высота которой равна 250 локтей, а длина стороны основания — 360 локтей.

От вавилонской математики ведёт начало привычное нам измерение углов градусами, минутами и секундами (введение этих единиц в древнегреческую математику обычно приписывают Гипсиклу, II век до н. э.).

Среди известных вавилонянам теорем была, например, такая: вписанный угол, опирающийся на диаметр круга — прямой. Главным достижением этого периода стало соотношение, позже получившее название теоремы Пифагора. Неизвестно, знали ли общую формулировку теоремы древние египтяне, но прямоугольный «египетский треугольник» со сторонами 3, 4 и 5 был там хорошо известен и широко использовался.

Общее и логически связное изложение тригонометрических соотношений появилось в древнегреческой геометрии. Греческие математики ещё не выделяли тригонометрию как отдельную науку, для них она была частью астрономии. Впервые само слово тригонометрия встречается в 1505 году в заглавии книги немецкого математика Питискуса.

Основным достижением античной тригонометрической теории стало решение в общем виде задачи «решения треугольников», то есть нахождения неизвестных элементов треугольника, исходя из трёх заданных его элементов (из которых хотя бы один является стороной).

В данном случае измерение треугольников следует понимать как решение треугольников, т. е. определение сторон, углов и других элементов треугольника, если даны некоторые из них.

Возникновение тригонометрии связано с землемерением, астрономией и строительным делом.

Значительный вклад в развитие тригонометрии внесли арабские ученые Аль-Батани (850-929) и Абу-ль-Вафа, Мухамед-бен Мухамед (940-998), который составил таблицы синусов и тангенсов через 10′ с точностью до 1/604. Теорему синусов уже знали индийский ученый Бхаскара (р. 1114, год смерти неизвестен) и азербайджанский астроном и математик Насиреддин Туси Мухамед (1201-1274). Кроме того, Насиреддин Туси в своей работе «Трактат о полном четырехстороннике» изложил плоскую и сферическую тригонометрию как самостоятельную дисциплину.

Дальнейшее развитие тригонометрия получила в трудах выдающихся астрономов Николая Коперника (1473-1543) — творца гелиоцентрической системы мира, Тихо Браге (1546-1601) и Иогана Кеплера (1571-1630), а также в работах математика Франсуа Виета (1540-1603), который полностью решил задачу об определениях всех элементов плоского или сферического треугольника по трем данным.

Долгое время тригонометрия носила чисто геометрический характер, т. е. Факты, которые мы сейчас формулируем в терминах тригонометрических функций, формулировались и доказывались с помощью геометрических понятий и утверждений. Такою она была еще в средние века, хотя иногда в ней использовались и аналитические методы, особенно после появления логарифмов. Пожалуй, наибольшие стимулы к развитию тригонометрии возникали в связи с решением задач астрономии, что представляло большой практический интерес.

Начиная с XVII в., тригонометрические функции начали применять к решению уравнений, задач механики, оптики, электричества, радиотехники, для описания колебательных процессов, распространения волн, движения различных механизмов, для изучения переменного электрического тока и т. д. Поэтому тригонометрические функции всесторонне и глубоко исследовались, и приобрели важное значение для всей математики.

Аналитическая теория тригонометрических функций в основном была создана выдающимся математиком XVIII веке Леонардом Эйлером (1707-1783) членом Петербургской Академии наук. Громадное научное наследие Эйлера включает блестящие результаты, относящиеся к математическому анализу, геометрии, теории чисел, механике и другим приложениям математики. Именно Эйлер первым ввел известные определения тригонометрических функций, стал рассматривать функции произвольного угла, получил формулы приведения. После Эйлера тригонометрия приобрела форму исчисления: различные факты стали доказываться путем формального применения формул тригонометрии, доказательства стали намного компактнее проще.

Таким образом, тригонометрия, возникшая как наука о решении треугольников, со временем развилась и в науку о тригонометрических функциях.

Тригонометрические функции представляют собой элементарные функции, аргументом которых является угол. С помощью тригонометрических функций описываются соотношения между сторонами и острыми углами в прямоугольном треугольнике. Области применения тригонометрических функций чрезвычайно разнообразны. Так, например, любые периодические процессы можно представить в виде суммы тригонометрических функций (ряда Фурье). Данные функции часто появляются при решении дифференциальных и функциональных уравнений.

К тригонометрическим функциям относятся следующие 6 функций: синус, косинус, тангенс, котангенс, секанс и косеканс. Для каждой из указанных функций существует обратная тригонометрическая функция.

Геометрическое определение тригонометрических функций удобно ввести с помощью единичного круга. На приведенном ниже рисунке изображен круг радиусом r=1. На окружности обозначена точка M(x,y). Угол между радиус-вектором OМ и положительным направлением оси Ox равен α.

Синусом угла α называется отношение ординаты y точки M(x,y) к радиусу r:
sinα=y/r.
Поскольку r=1, то синус равен ординате точки M(x,y).

Косинусом угла α называется отношение абсциссы x точки M(x,y) к радиусу r:
cosα=x/r

Тангенсом угла α называется отношение ординаты y точки M(x,y) к ee абсциссе x:
tanα=y/x,x≠0

Котангенсом угла α называется отношение абсциссы x точки M(x,y) к ее ординате y:
cotα=x/y,y≠0

Секанс угла α − это отношение радиуса r к абсциссе x точки M(x,y):
secα=r/x=1/x,x≠0

Косеканс угла α − это отношение радиуса r к ординате y точки M(x,y):
cscα=r/y=1/y,y≠0

В единичном круге проекции x, y точки M(x,y) и радиус r образуют прямоугольный треугольник, в котором x,y являются катетами, а r − гипотенузой. Поэтому, приведенные выше определения тригонометрических функций в приложении к прямоугольному треугольнику формулируются таким образом:
Синусом угла α называется отношение противолежащего катета к гипотенузе.
Косинусом угла α называется отношение прилежащего катета к гипотенузе.
Тангенсом угла α называется противолежащего катета к прилежащему.
Котангенсом угла α называется прилежащего катета к противолежащему.
Секанс угла α представляет собой отношение гипотенузы к прилежащему катету.
Косеканс угла α представляет собой отношение гипотенузы к противолежащему катету.

График функции синус
y=sinx, область определения: x∈R, область значений: −1≤sinx≤1

График функции косинус
y=cosx, область определения: x∈R, область значений: −1≤cosx≤1

График функции тангенс y=tanx, область определения: x∈R,x≠(2k+1)π/2, область значений: −∞

График функции котангенс y=cotx, область определения: x∈R,x≠kπ, область значений: −∞

График функции секанс y=secx, область определения: x∈R,x≠(2k+1)π/2, область значений:secx∈(−∞,−1]∪[1,∞)

График функции косеканс y=cscx, область определения: x∈R,x≠kπ, область значений: cscx∈(−∞,−1]∪[1,∞)

3.Тригонометрия в физике

В технике и окружающем нас мире часто приходится сталкиваться с периодическими (или почти периодическими) процессами, которые повторяются через одинаковые промежутки времени. Такие процессы называют колебательными. Колебательные явления различной физической природы подчиняются общим закономерностям. Например, колебания тока в электрической цепи и колебания математического маятника могут описываться одинаковыми уравнениями. Общность колебательных закономерностей позволяет рассматривать колебательные процессы различной природы с единой точки зрения. Наряду с поступательными и вращательными движениями тел в механике значительный интерес представляют и колебательные движения.

Механическими колебаниями называют движения тел, повторяющихся точно (или приблизительно) через одинаковые промежутки времени. Примерами простых колебательных систем могут служить груз на пружине или маятник. Возьмем, например, гирю, подвешенную на пружине (см. рис.) и толкнем ее вниз. Гиря начнет колебаться вниз и вверх. Как показывают расчеты, отклонение гири от положения равновесия выражается формулой

Здесь v0-скорость, с которой мы толкнули гирю, w= , где m-масса гири, k — жесткость пружины.

Если мы сначала оттянем гирю на s0 см, а потом толкнем ее со скоростью v0, то она будет совершать колебания по более сложному закону:

Расчеты показывают, что амплитуда А этого колебания равна ,а число таково, что tga= . Из-за слагаемого a это колебание отличается от колебания s=Asinwt.

График колебания (2) получается из графика колебания(1) сдвигом влево

на . Число a — начальная фаза.

Колебания маятника тоже приближенно происходят по синусоидальному закону. Графическое изображение этой функции, дающее наглядное представление о протекании колебательного процесса во времени удобно рассмотреть с помощью модели маятника программы « Функции и графики»

Если эти колебания малы, то угол отклонения маятника приближенно выражается формулой: ,где l-длина маятника, а j0-начальный угол отклонения. Чем длиннее маятник, тем медленнее он качается. Измеряя период колебания маятника известной длины, можно вычислять ускорение земного тяготения g в различных точках земной поверхности.

Не только многие механические колебания происходят по синусоидальному закону. И в электрических цепях возникают синусоидальные колебания. Так в цепи, изображенной в правом верхнем углу модели, заряд на обкладках конденсатора изменяется по закону

q = CU + (q0 – CU) cos ωt, где С- емкость конденсатора, U –напряжение на источнике тока, L –индуктивность катушки, — угловая частота колебаний в цепи.

Благодаря модели конденсатора можно устанавливать параметры колебательного контура и строить, соответствующие графики g(t)и I(t). На графиках хорошо видно как влияет напряжение на изменение силы тока и заряда конденсатора, при этом видно, что при положительном напряжении заряд также принимает положительные значения. На рисунке показано, что при изменении емкости конденсатора( при изменении индуктивности катушки) и сохранении неизменными остальных параметров меняется период колебаний, т. е. меняется частота колебаний силы тока в цепи и меняется частота заряда конденсатора.

Баллистическое движение
Баллистика – раздел механики, изучающий движение тел в поле тяжести Земли.

Пули снаряды и бомбы, так же как и теннисный, и футбольный мячи, и ядро легкоатлета, при полете движутся по баллистической траектории.

Закон баллистического движения в координатной форме: (1)

Уравнение траектории снаряда, или зависимость y(x), можно получить, исключая из уравнений системы время. Для этого из первого уравнения системы найдём:

Подставляя его во второе уравнение, получаем уравнение траектории снаряда:

Траектория баллистического движения.

Построим баллистическую траекторию (2).

Графиком квадратичной функции, как известно, является парабола. В рассматриваемом случае парабола проходит через начало координат,

так как из (2) следует, что у = 0 при х = 0.

Ветви параболы направлены вниз, так как коэффициент ( — ) при x меньше нуля.

Определим основные параметры баллистического движения: время подъема на максимальную высоту, максимальную высоту, время и дальность полета. Вследствие независимости движений по координатным осям подъем снаряда по вертикали определяется только проекцией начальной скорости на ось Y. В соответствии с формулой: полученной для тела, брошенного вверх с начальной скоростью , время подъема снаряда на максимальную высоту равно:

Максимальная высота подъема может быть рассчитана по формуле

, если подставить вместо :

Как соединить две трубы.

Приведенные примеры могут создать впечатление, что синусоиды встречаются только в связи с колебаниями. Однако это не так. Например, синусоиды используются при соединении двух цилиндрических труб под углом друг к другу. Чтобы соединить две трубы таким образом, надо срезать их наискосок.

Если развернуть срезанную наискосок трубу, то она окажется ограниченной сверху синусоидой. В этом можно убедиться, обернув свечку бумагой, срезав ее наискосок и развернув бумагу. Поэтому, чтобы получить ровный срез трубы, можно сначала обрезать металлический лист сверху по синусоиде и свернуть его в трубу.

Впервые теория радуги была дана в 1637 году Рене Декартом. Он объяснил радугу, как явление, связанное с отражением и преломлением света в дождевых каплях.

Радуга возникает из-за того, что солнечный свет испытывает преломление в капельках воды, взвешенных в воздухе по закону преломления:

где n1=1, n2≈1,33 – соответственно показатели преломления воздуха и воды, α – угол падения, а β – угол преломления света.

Проникновение в верхние слои атмосферы планет заряженных частиц солнечного ветра определяется взаимодействием магнитного поля планеты с солнечным ветром.

Сила, действующая на движущуюся в магнитном поле заряженную частицу называется, силой Лоренца. Она пропорциональна заряду частицы и векторному произведению поля и скорости движения частицы

Задачи по тригонометрии с практическим содержанием.

Тело веса Р положено на наклонную плоскость с углом наклона a. Тело под действием своего собственного веса прошло ускоренно путь S в t секунд. Определить коэффициент трения k.

Сила давления тела на наклонную плоскость F =kPcosa.

Сила, которая тянет тело вниз равна F=Psina-kPcosa=P(sina-kcosa).(1)

Если тело движется по наклонной плоскости, то ускорение а= .

С другой стороны, ускорение а= = =gF ;следовательно, .(2)

Из равенств (1) и (2) следует, что g(sina-kcosa)= .

В качестве исследования, я решила провести измерения пандусов двух учреждения нашего города и выяснить, какой из них больше соответствует нормативным требованиям. Пандус — (фр. pente douce — пологий скат), также рампа — пологая наклонная площадка, соединяющая две разновысокие горизонтальные поверхности, обычно для обеспечения перемещения колёсных транспортных средств с одной на другую. Среди часто встречающихся применений — обеспечение подъезда инвалидных колясок к расположенному над цоколем здания парадному входу.

Пандус магазина «Монетка» (см. приложение 1)

высота =40см=0,4м
длина=240 см=2,4м

Пандус представляет собой прямоугольный треугольник, следовательно, имея данные измерения, можно рассчитать гипотенузу, обозначим ее за с.

с1= √2,42 +0,42 = 2,43 м
Зная гипотенузу, можно рассчитать синус угла наклона.

Синус- это отношение противолежащего катета к гипотенузе.
= = 0,164
Угол наклона пандуса равен 9°.

Рассмотрим пандус, принадлежащий магазину «Дикси» (см. приложение 2)

Высота = 80 см = 0,8 м

Длина=530 см=5,3 м

Соответственно первому решению, найдем гипотенузу (с)

Найдем синус: = =0,149
Угол наклона пандуса равен 8°.
СНиП 35-01-2001

Требования СНиП (строительные нормы и правила) касательно пандусов для инвалидов содержат следующие пункты:

  • Максимальная высота подъемного сооружения (одного марша) не должна превышать 0,8 м. Угол наклона при этом должен быть меньше 8%. Если перепад высоты менее 0,2 м, допустимый уклон составляет 10 %.

Таким образом, оба пандуса соответствуют строительным нормам и правилам. Данный пример также показал, что тригонометрия широко применима в жизни.

Подводя итог всему выше сказанному, мы подтверждаем гипотезу, выдвинутую вначале проекта. Действительно, большинство физических явлений природы, закономерностей в архитектуре можно описать с помощью тригонометрии и тригонометрических функций. Сейчас в век инновационных технологий еще сложнее представить жизнь без использования тригонометрии. Как показал пример, даже для установления всем привычных пандусов нужно знать элементарную часть тригонометрии, изучаемую в школе. На каждом шагу мы сталкиваемся с математикой. Однажды Советский и российский математик Александр Данилович Александров сказал: «Окружающий нас мир – это мир геометрии» и я полностью с ним согласна.

  1. В.А.Косьянов «Физика 10 класс». Издательство «Дрофа», Москва, 2003 год.
  2. Ш.А.Алимов «Алгебра и начала математического анализа». Издательство «Просвещение», Москва, 2017 год.
  3. http://ya-znau.ru/znaniya/zn/78
  4. Детская энциклопедия «Я познаю мир. Физика». Издательство «АСТ», Москва, 1997 год.
  5. https://ru.wikipedia.org/wiki/История_тригонометрии
  6. http://bouw.ru/article/uklon-pandusa-dlya-invalidov

Синусы и косинусы в физике-ничего не понимаю!?

В физике в механике есть кучу заданий, где например тело едет или покоится на поверхности под наклоном. И там нужно применять косинус или синус угла сил. Я не понимаю, что это всё значит и как правильно понять в какой ситуации нужен синус, а в какой косинус? Я прикреплю задание, которое сейчас решаю. ЕСЛИ можете-нарисуйте и прикрепите фото с углами и т. д

Лучший ответ

Чтоб понять — ты сам нарисовать и должен.
Самое первое уравнение — это векторная сумма сил, равная нулю (второй закон).
Вот и начни с того, что нарисуй брус, и нарисуй все 4 приложенные к нему силы.
Для этого тебе придется нарисовать горизонтальную поверхность чтоб направление силы F изобразить.
А потом подумаешь — как же найти эту векторную сумму (другими словами построить силовой многоугольник).
Подумаешь и поймешь, что это головняк еще тот.
Можно и нужно поступить проще.
Складывать не вектора, а проекции этих векторов на оси.
Потому, что проекция — это скаляр, и таким образом от геометрической (векторной) суммы переходят к алгебраической.
Для плоского случая нужно две оси.
Одна ось уже есть — горизонтальная.
Проводишь вертикальную.
Для каждого вектора находишь две проекции.
И складываешь проекции по каждой оси.
Получаешь два уравнения, но зато алгебраических.
А теперь собственно к вопросу.
Вспоминаешь прямоугольный треугольник.
Катет равен гипотенузе, умноженной на косинус прилежащего угла.
Катет равен гипотенузе, умноженной на синус противолежащего угла.
В физическом контексте катет — это проекция вектора силы на ось.
Гипотенуза — это вектор силы.
F — это вектр силы.
Fcos30 — это проекция силы F на ось Х
Fsin30 — это проекция силы F на ось Y

Никита ЯценкоУченик (205) 3 года назад
Спасибо что так легко объяснили
Макаров АлексейУченик (179) 1 год назад
вы объяснили всё лего и понятно для меня!
это круто
Рома РезниченкоПрофи (526) 4 месяца назад

всё ещё нихрена не понятно в каких случаях использовать cos, в каких sin. Я не только про эту задачу, я про вообще все

Mister User Оракул (60337) Рома Резниченко, Разбираться нужно на конкретных примерах и задачах. Я на связи в телеге: @urkemik

Остальные ответы
Так это не школьная программа. Тогда надо въезжать как то. К репетитуру.
Богдан МордусУченик (245) 4 года назад

К сожалению сейчас это программа 9 класса в школе, по крайней мере меня в школе этому именно тогда и учили.

Я сам разбирался. 2 урока физики мало в неделю
Постоянно это ученикам и студентам объясняю. Обратитесь к репетитору, за одно занятие объяснит все.
ℓo√ﻉ♥Мудрец (15222) 6 лет назад
Да и надо ли оно вам, объяснять бесплатно каждому.

Илья Высший разум (373488) Ну. Тут один зайка мне грозился жалобами, если я за него конспект не напишу)) Обеспечил мне заряд хорошего настроения на весь день))

Если это — не школьная программа, то я — Нгуен ван Хуэн, посол Вьетнама в СССР. А что же сейчас в школе-то учат? И за каждой такой муйнёй выезжать к репетитору? Мы что, правда стали страной дебилов ?

станислав березовскийПрофи (835) 4 года назад

Нам в школе (с 1994-го по 2002-й) учителя в основном ныли, что у них маленькие зарплаты и они не намерены нам всё разжёвывать.

Синус, косинус острого угла треугольника

Прямоугольный треугольник

Если у нас есть треугольник \(ABC\) , рисунок выше, для которого \(С\) — прямой угол, то сторонами \(BC\) и \(AC\) будут катеты, а сторона \(AB\) — гипотенуза. Следовательно, по определению, синус угла \(ABC\) равен отношению катета \(АС\) к гипотенузе: синус угла \(ABC=\frac\) и синус угла \(BAC=\frac\) .

косинус угла \(ABC=\frac\) и косинус угла \(BAC=\frac\) .

Чаще всего известно лишь часть данных, например катет и угол, нужно выразить неизвестную величину. Подумайте, как это сделать.

Пример 1. Вычислим синус по двум катетам.

Берем тот же треугольник \(ACB\) с прямым углом \(С\) в котором мы знаем катеты: \(BC = 3\) , \(AC = 4\) . Для вычисления синуса угла с необходимо разделить катет на гипотенузу: \(sin ∠BAC = \frac < AB>\) .

Гипотенузу вычислим из теоремы Пифагора: \(AC^2+BC^2=AB^2\) \(9+16=25\) \(AB=5\) откуда синус равен:
\(sin ∠ BAC = \frac<3>\)

Пример 2. Вычислим синус угла \(ABC\) по углу \( BAC \) 30° градусов в прямоугольном треугольнике \(ACB\) .

Самое главное помнить, что сумма всех углов в треугольнике равна 180 °. Найдем угол \(ABC\) :
\(180\) ° \(-30\) ° \(-90\) ° \(=60\) °.
\(sin\) \(60\) ° возьмем из табличного значения: \(\frac< \sqrt<3>> < 2>\)
Табличные значения \(sin\) и \(cos\) :

Табличные значения синуса и косинуса

Чтобы лучше понимать значения табличные значения синуса и косинуса представим их на координатной окружности: где ось ординат \((y)\) линия синуса, ось абсцисс \((x)\) – линия косинуса. Если вы забыли значения синуса и косинуса \(90\) и \(180\) можно нарисовать рисунок и посмотреть значения, не забывая, что на первом месте стоит \(x\) , на втором \(y\) \((x,y)\) ;

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *