Что такое нормали в 3d
Перейти к содержимому

Что такое нормали в 3d

  • автор:

Имитируя объём: как карты нормалей помогают заменить высокополигональные объекты

В заключение пройдёмся по ключевым вещам, которые описаны в тексте. Нормали — это векторы, которые используются для определения того, как свет отражается от поверхности. Они могут применяться для управления переходом между гранями: через усреднение нормалей связанных вершин, чтобы сделать плавный переход, или разделение, чтобы сделать жёсткий переход.

Также нормали можно применять для создания низкополигональной модели, которая сможет отражать свет так же, как высокополигональная модель. Эта информация хранится в трёх отдельных каналах изображения, и 3D-редактор считывает её, чтобы понять, в каком направлении должен падать свет.

Модификатор Edit Normals и управление нормалями. 3ds Max

Изучая полигональное моделирование, постоянно встречается упоминание о «нормалях». При этом увидеть их нигде не получается. Но благодаря модификатору Edit Normals эти скрытые элементы можно не только увидеть, но и редактировать.

1. Нормали и что они делают

Нормалями обладает каждая точка Vertex объекта. Точка может иметь одну или несколько нормалей. Количество нормалей зависит от числа полигонов, объединенных этой точкой. Нормали влияют на то, как поверхность объекта будет отражать свет.

Vertex

Положение нормалей можно связать со сглаженностью объекта. Если точка имеет несколько нормалей, то каждая из них будет перпендикулярна одному из прилежащих полигонов. Когда у полигона все точки такие, то он получается жестким и несглаженным.

В случае, если точки имеют одну нормаль, то полигон будет сглаживаться. Причем, такая точка будет сглаживать все прилежащие полигоны, но не целиком.

Именно из-за правильного отражения света объект выглядит сглаженным или неровным даже при малом числе полигонов.

Нормали

2. Edit Normals

Все указанные действия совершаются в модификаторе Edit Normals. Чтобы им пользоваться, нужно создать любой геометрический объект и перейти в Modify – Modifier List – Edit Normals. В зависимости от объекта и его сглаженности, нормали могут располагаться иначе.

Select By – режимы выбора нормалей.

Normal – выбор каждой отдельной нормали.

Vertex – выбор всех нормалей, принадлежащих одной точке.

Edge – выбор всех нормалей, принадлежащих одному ребру. Если у точки несколько нормалей, то выбираются не все.

Face – выбор всех нормалей, принадлежащих фейсам (Face). Если у точек несколько нормалей, то выбираются не все.

Ignore Backfacing – игнорирование задних нормалей при выделении.

Show Handles – отображение маркеров на вершинах нормалей.

Display Length – значение длины прямой, отображающей нормаль.

Display Length

Unify – усредняет направление всех нормалей в точке. Общее направление задается относительно прилежащих полигонов. Включение функции Unify/Break to Average усредняет нормали по их среднему направлению. Полигоны в этом случае не влияют.

Break – разделяет одну нормаль на шесть. Все они будут направлены так, чтобы быть перпендикулярными своим полигонам. Включение функции Unify/Break to Average также разделяет нормали, но сохраняет их направление.

Break

Average – инструмент усреднения нормалей.

Selected – устанавливает все выбранные нормали в одно, общее положение.

Use Threshold – установка дистанции. За пределами этой дистанции нормали не будут усредняться, даже если были выбраны. Эта функция полезна, чтобы не перенаправить случайно выделенную нормаль.

Use Threshold

Target – усреднение двух нормалей с помощью целевого выбора. Включив функцию Target, нажмите сначала на одну нормаль, затем на вторую. Обе нормали усредняются по общему для них значению.

Pixels – дальность в пикселях между курсором и нормалью. Это значение регулирует точность наведения курсора на нормаль в режиме Target.

Target

Copy Value – копирование направления выбранной нормали.

Paste Value – присвоение скопированного направления новой, выделенной нормали.

Specify – присваивает нормали тип Specified.

Нормали такого типа не учитывают группы сглаживания, присвоенные объекту.

Reset – восстанавливает изначальное положение нормали.

Make Explicit – присваивает нормали тип Explicit.

Нормали такого типа задаются для того, чтобы можно было их перемещать и вращать.

Make Explicit

3. Передвижение и вращение нормалей

Нормали, как и другие подобъекты, можно перемещать и вращать. Для этого их нужно просто выделить и воспользоваться инструментом Select and Move/Rotate на панели Main Toolbar. Тип Explicit, необходимый для подобных изменений, будет назначен автоматически.

Select and Move/Rotate

Редактирование нормалей – инструмент тонкой настройки объекта. Обычно им пользуются косвенно через функцию или модификатор Smooth, через Smoothing Groups. Тем не менее, нормали несут очень важную информацию – способ отображения поверхности объекта. Поэтому даже если не приходится их редактировать, обязательно нужно понимать принцип их работы.

Освойте профессию визуализатора

Научитесь создавать крутые рендеры, панорамы 360, виртуальные туры и анимационные ролики.

Что такое нормали в 3d

На форуме периодически возникают вопросы по поводу использования нормалок, потому решил напcиать небольшой ликбез на эту тему.

Простыми словами нормаль — это направление куда «смотрит» вертекс. Выражается в координатах XYZ для каждого вертекса. С помощью нормалей формируютя группы сглаживания или хард/софт эджи, которые, в свою очередь, задают характер «поверхности» полигонов.

Редактирование нормалей позволяет расширить возможности моделирования. К примеру плоскую поверхность можно сделать визуально фигурной либо наоборот.

Абсолютно идентичные по геометрии плоскости, но имеющие разные нормали на вертексах.

Так же можно сделать обьемную форму визуально плоской, выровняв нормали в одном направлении

Однако данный прием ограничен количеством вертексов, и для создания детализированной поверхности потребуется не меньше вертексов, чем на полноценной хайке.

Это проблему решает карта нормалей, которая содержит в каждом пикселе координаты нормали, закодированные в RGB каналах в виде координат XYZ. Такая карта огранчиена уже количеством пикселей, а это более милиона при разрешении 1024х1024, что во много раз превышает количество вертексов и позволяет добавить более подробные детали на поверхность.

Таким образом Normal Map коллосально расширяет возможности детально прорабатывать относительно «легкие» модельки. Однако возникает вопрос, как эту нормалку получить.

Самый верный и правильный способ, это «запекание» с более детальной модели. Процесс запекания кодирует нормали с хайполи модели в координаты RGB, учитывая так же нормали самой лоуполи, так называемая «компенсация».

О бейке нормалей есть полно информации и это достаточно обьемная тема тянет на отдельную статью, потому ограничусь основными моментами.

Для корректного запекания нужна хорошая UV мапа. Основное правило простое, все харды (или грани между группами сглаживания) обязательно должны иметь разрез на UV, иначе будет виден шов. Можно запечь на модель с одной группой сглаживания и забить на швы в нужных местах, но тогда нормалка будет с жуткими градиентами (та самая компенсация нормалей лоуполи) что в дальнейшем обязательно вылезет боком. Чем меньше градиенты на нормалке, тем с ней легче работать. При подготовле лоуполи нужно настроить группы сглаживания, сделать разреры ЮВ по нужным граням, и уже потом продолжать резать по необходимости.

Готовую нормалку нельзя корректировать как обычную текстуру, любые манипуляции с яркостью, насыщенностью, контрастом и прочее нарушат те самые RGB координаты, и нормалка будет отображаться некорректно. Подрисовывание возможно, но требуется опыт.

При загрузке нормалки нужно обязательно учитывать гамма коррекцию (sRGB) Для нормалки она не используется.

Normal Map имеет два формата: OpenGL и DirectX, которые различаются направлением зеленого канала. Потому обязательно учитывайте какой формат используется вашим рендер движком. Во всех современных движках есть параметр, флипающий зеленый канал без использования сторонних редакторов.

На этом все. Вопросы приветствуются, при необходимости могу дополнить статью или написать новую.

Творческих успехов всем!

Это норма: что такое карты нормалей и как они работают

На протяжении нескольких лет я пытался разобраться в картах нормалей и в проблемах, которые обычно возникают при работе с ними.

Большинство найденных объяснений было слишком техническим, неполным или чересчур сложным для моего понимания, поэтому я решил попробовать объяснить собранную мной информацию. Я понимаю, что эти объяснения могут быть неполными или не совсем точными, но всё равно попробую.

Первые созданные человеком 3D-модели выглядели примерно так:

image

Это замечательно, но у такой модели есть очевидное ограничение: она выглядит слишком полигональной.

Наиболее очевидное решение: добавить больше полигонов, сделав поверхность более равномерной и гладкой, вплоть до того, чтобы полигоны казались единой гладкой поверхностью. Но оказывается, для того, чтобы сделать поверхности наподобие сфер гладкими, нужно огромное количество полигонов (особенно сегодня).

image

Требовалось другое решение, и так были изобретены нормали. (Всё происходило не совсем так, но так проще объяснять и понимать.)

Давайте проследим за линией из центра полигона, перпендикулярной его поверхности. Мы дадим этой линии очень непривычное название: нормаль. Цель нормали — контролировать, куда указывает поверхность, чтобы когда свет отразиться от этой поверхности, она могла использовать нормаль для вычисления получившегося отражения. Когда свет падает на полигон, мы сравниваем угол луча света с нормалью полигона. Луч отражается под тем же углом относительно направления нормали:

image

Другими словами, отражение света будет симметрично относительно нормали полигона. Именно так работает большинство отражений в реальном мире. По умолчанию лучи света отражаются от всех полигонов совершенно перпендикулярно к их поверхности (как должны это делать в реальной жизни), потому что нормали полигона по умолчанию перпендикулярны к поверхности полигона. Если в нормалях будут пробелы, то мы увидим их как отдельные поверхности, поскольку свет отразится в одном или другом направлении.

image

Если две грани соединены, то мы можем попросить компьютер сгладить переход между нормалью одного полигона к другому, чтобы нормали постепенно выстраивались в соответствии с ближайшей нормалью полигона. Таким образом, когда свет попадёт ровно в центр одного полигона, то он отразится прямо, в соответствии с направлением нормали. Но между полигонами это направление нормали сглаживается, изменяя отражение света.

image

Мы будем воспринимать переход как единую поверхность, потому что свет будет отражаться между одним и другим полигоном плавным образом, и между ними не будет пробелов. По сути, свет отражается от этих полигонов плавно, как будто у нас имеется множество полигонов.

Именно этим мы управляем, задавая smoothing groups (3ds Max, Blender) или указывая рёбра как hard или smooth (Modo, Maya): мы сообщаем программе, какие переходы между гранями должны быть плавными, а какие — жёсткими.

Вот сравнение одной сферы из 288 полигонов с жёсткими и плавными переходами:

image

Потенциально мы можем задать нечто вроде параллелепипеда, чтобы все его вершины имели усреднённые нормали. 3D-редактор будет стремиться сгладить его поверхность, чтобы она выглядела как единая плавная поверхность. Для 3D-редактора это вполне логично, но выглядит очень странно, потому что у нас есть объект, который очевидно должен иметь несколько отдельных поверхностей (каждая грань параллелепипеда), однако программа пытается показать их как одну плавную поверхность.

image

Именно поэтому в 3D-редакторах обычно есть параметр углов сглаживания: если у нас есть два связанных полигона под углом, превышающем угол сглаживания, то их переход будет плавным, а соединение полигонов под углом меньше угла сглаживания будет жёстким. Благодаря этому крутые углы между поверхностями будут отображаться как разные поверхности, как это и бывает в реальном мире.

Итак, мы использовали нормали для контроля над переходами между гранями модели, но можно пойти ещё дальше.

Так как мы меняем способ отражения света от объекта, можно также сделать так, чтобы очень простой объект отражал свет, как сложный. Это называется картой нормалей. Мы используем текстуру для изменения направления света, отражающегося от 3D-объекта, заставляя его выглядеть сложнее, чем он есть на самом деле.

Примером из реального мира могут служить голограммы, которые раньше вручали в подарок при покупке картофельных чипсов (по крайней мере, у нас, в Испании). Они совершенно плоские, но отражают свет так, как бы это делал 3D-объект, благодаря чему становятся сложнее, чем на самом деле. В мире 3D-графики это работает даже лучше, но всё равно имеет свои ограничения (поскольку поверхность остаётся плоской).

Хоть мы и применяем нормали полигонов для реализации какой-то чёрной магии, на самом деле мы не контролируем сглаживание поверхности модели при помощи нормалей полигонов. Мы используем нормали вершин для контроля сглаживания нормалей. По сути, идея та же, но немного более сложная.

С каждой вершиной может быть связано одна или несколько нормалей. Если она имеет одну нормаль, то можно назвать её усреднённой нормалью вершины, а если несколько — то разделённой нормалью вершины.

Давайте возьмём два полигона, соединённых ребром. Если переход между двумя гранями плавный (если мы указали его как плавный в Maya/Modo, или обе имеют одинаковую smoothing group в Max/Blender), то каждая вершина имеет одну нормаль, которая является средней нормалей полигонов (поэтому она и называется усреднённой нормалью вершины). Важное примечание: до недавнего времени каждый 3D-редактор использовал собственный способ вычисления усреднённых нормалей вершин, то есть карты нормалей, вычисленные в одной программе, в другой могли выглядеть совершенно иначе. Подробнее об этом я расскажу во второй части туториала.

image

Если переход жёсткий (hard edge или разные smoothing groups), то каждая вершина имеет несколько нормалей: по одной для каждой соединённой вершины, выровненной по их нормалям. При этом между нормалями образуется пробел, который выглядит как две разные поверхности. Именно это называется разделённой нормалью вершины.

image

image

Как вы могли догадаться, контроль нормалей вершин очень важен, если мы хотим контролировать карты нормалей. К счастью, нам не обязательно изменять нормали напрямую или даже видеть их, но понимание того, как это работает, поможет вам понять, почему мы выполняем работу именно так и больше разбираться в проблемах, с которыми мы можем встретиться.

При запекании карты нормалей мы по сути говорим программе изменить направление, которому следуют нормали lowpoly-модели, так, чтобы они соответствовали направлению в highpoly-модели; поэтому lowpoly-модель будет отражать свет так же, как highpoly. Вся эта информация хранится в текстуре под названием «карта нормалей». Давайте рассмотрим пример.

Допустим, у нас есть вот такая низкополигональная модель (lowpoly). Плоская поверхность с четырьмя вершинами и настроенными UV, которые программа запекания будет использовать для создания карты нормалей.

image

И она должна получить информацию о нормалях от этой высокополигональной (highpoly) модели, нормали которой сложнее.

image

Помните, что мы переносим только информацию о нормалях, то есть UV, материал, топология, преобразования и т.п. к делу не относятся. Проверенное правило: если highpoly-модель выглядит хорошо, то её нормали тоже хороши и вполне должны подходить для запекания.

Программа запекания берёт lowpoly-модель и испускает лучи, следуя по направлениям нормалей lowpoly (именно поэтому нам нужно контролировать нормали lowpoly). Эти лучи имеют ограниченную длину чтобы не получать информацию нормалей от далёких граней (обычно это расстояние называется bake distance или cage distance). Когда эти лучи сталкиваются с highpoly, программа запекания вычисляет, как отразить эти лучи, чтобы они следовали по направлению нормалей highpoly, и сохраняет эту информацию в карту нормалей.

image

Вот результат запекания для нашего примера:

image

У нас есть текстура, которую движок использует для изменения нормалей lowpoly, чтобы свет отражался от этой lowpoly-модели так же, как он отражался бы от highpoly-версии. Не забывайте, что это только текстура, которая не влияет на силуэт lowpoly-модели (невозможно изменить способ отражения света от модели, если свет не падает на эту модель).

Хотя понятно, что можно «считать» внешний вид highpoly по внешнему виду карты нормалей, очевидно, что карты нормалей — это не обычные текстуры, потому что они хранят информацию не о цвете, а о нормалях. Также это значит, что карты нормалей нельзя рассматривать как обычные текстуры; к тому же, как мы увидим, они обладают особыми параметрами сжатия и гамма-коррекции.

Можно воспринимать карту нормалей как набор из трёх текстур в оттенках серого, хранящийся в одном изображении:

image

Первое изображение сообщает движку, как эта модель должна отражать свет, падающий справа; оно хранится в красном канале текстуры карты нормалей.

Второе изображение сообщает движку, как модель должна отражать свет, падающий снизу*; оно хранится в зелёном канале текстуры карты нормалей.

*В некоторых программах свет падает не снизу, а сверху, то есть могут быть «левосторонние» и «правосторонние» карты нормалей. Как мы увидим позже, это может вызывать некоторые проблемы.

Третье изображение сообщает движку, как модель должна отражать свет, падающий спереди; оно хранится в синем канале текстуры карты нормалей. Так как большинство объектов при освещении спереди выглядят белыми, карты нормалей обычно кажутся синеватыми.

Когда мы комбинируем все три изображения в одно, то получаем карту нормалей. Помните, что это объяснение не полностью корректно, но надеюсь, что оно позволит вам понять информацию, хранящуюся внутри карты нормалей, и лучше разобраться, что она делает.

Нормали — это векторы, которые используются для определения того, как свет отражается от поверхности. Их можно использовать для контроля над переходом между гранями (усреднением нормалей соединённых вершин для создания плавного перехода или разделением их для создания жёсткого перехода), но также их направление можно изменять, чтобы lowpoly-модель отражала свет так же, как более сложная модель.

Эта информация хранится в трёх отдельных каналах изображения, и 3D-редактор считывает её, чтобы понять, в каком направлении должна смотреть поверхность модели.

В следующей статье цикла мы поговорим о том, как можно запекать эти детали из highpoly-модели в lowpoly.

  • карты нормалей
  • запекание нормалей
  • 3d-редакторы
  • normal mapping
  • Работа с 3D-графикой
  • Разработка игр

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *