Что такое полный квадрат
Перейти к содержимому

Что такое полный квадрат

  • автор:

Полный квадрат

Полный квадрат, или квадратное число, — число, являющееся квадратом некоторого целого числа. Иными словами, квадратом является целое число, квадратный корень из которого извлекается нацело. Геометрически такое число может быть представлено в виде площади квадрата с целочисленной стороной.

Например, 9 — это квадратное число, так как оно может быть записано в виде 3 × 3, а также представляет площадь квадрата со стороной, равной 3.

Квадратное число входит в категорию классических фигурных чисел.

Связанные понятия

Преде́льная то́чка множества в общей топологии — это такая точка, любая проколотая окрестность которой пересекается с этим множеством.

В математическом анализе, и прилегающих разделах математики, ограниченное множество — множество, которое в определенном смысле имеет конечный размер. Базовым является понятие ограниченности числового множества, которое обобщается на случай произвольного метрического пространства, а также на случай произвольного частично упорядоченного множества. Понятие ограниченности множества не имеет смысла в общих топологических пространствах, без метрики.

Упорядоченное поле — алгебраическое поле, для всех элементов которого определён линейный порядок, согласованный с операциями поля. Наиболее практически важными примерами являются поля рациональных и вещественных чисел.

Наиме́ньшее о́бщее кра́тное (НОК) двух целых чисел m и n есть наименьшее натуральное число, которое делится на m и n без остатка. Обозначается одним из следующих способов.

В математике свободная абелева группа (свободный Z-модуль) — это абелева группа, имеющая базис, то есть такое подмножество элементов группы, что для любого её элемента существует единственное его представление в виде линейной комбинации базисных элементов с целыми коэффициентами, из которых только конечное число являются ненулевыми. Элементы свободной абелевой группы с базисом B называют также формальными суммами над B. Свободные абелевы группы и формальные суммы используются в алгебраической топологии.

Упоминания в литературе

Подсчитывая сумму кубов, мы получаем 1, 9, 36, 100, 225 и т. д. – числа, которые являются полными квадратами . Но это не любые квадраты, а квадраты 1, 3, 6, 10, 15 и т. д. – треугольных чисел! Мы уже знаем, что они по своей сути являются суммами простых чисел, а значит,

Связанные понятия (продолжение)

Область значений (или множество значений) функции — множество, состоящее из всех значений, которые принимает функция.

Группа классов идеалов дедекиндова кольца — это, грубо говоря, группа, позволяющая сказать, насколько сильно в данном кольце нарушается свойство факториальности. Эта группа тривиальна тогда и только тогда, когда дедекиндово кольцо является факториальным. Свойства дедекиндова кольца, касающиеся умножения его элементов, тесно связаны с устройством этой группы.

Евклидово кольцо — общеалгебраическое кольцо, в котором существует аналог алгоритма Евклида.

В математике, несократимая дробь (также приведённая дробь) — дробь, которую невозможно сократить. Иначе говоря, значение несократимой дроби не допускает более простое представление в виде дроби. В случае обыкновенных дробей «более простое» означает: с меньшим (но натуральным) знаменателем.

Обра́тный элеме́нт — термин в общей алгебре, обобщающий понятия обратного числа (для умножения) и противоположного числа (для сложения).

Площадь плоской фигуры — аддитивная числовая характеристика фигуры, целиком принадлежащей одной плоскости. В простейшем случае, когда фигуру можно разбить на конечное множество единичных квадратов, площадь равна числу квадратов.

Нера́венство треуго́льника в геометрии, функциональном анализе и смежных дисциплинах — это одно из интуитивных свойств расстояния.

«Тогда́ и то́лько тогда́» — логическая связка эквиваленции между утверждениями, применяемая в логике, математике, философии. Чтобы быть эквиваленцией, связка должна быть идентична стандартному материальному условному высказыванию («только тогда» эквивалентно «если … то»), соединённому со своей противоположностью, откуда и название связки. В результате истинность одного утверждения требует такой же истинности другого, то есть либо оба они истинны, либо оба ложны. Можно спорить о том, передаёт ли выражение.

Праймориал (англ. Primorial, иногда именуется также «примориал») — в теории чисел функция над рядом натуральных чисел, схожая с функцией факториала, с разницей в том, что праймориал является последовательным произведением простых чисел, меньших или равных данному, в то время как факториал является последовательным произведением всех натуральных чисел, меньших или равных данному.

Одноро́дный многочле́н — многочлен, все одночлены которого имеют одинаковую полную степень. Любая алгебраическая форма является однородным многочленом. Квадратичная форма задается однородным многочленом второй степени, бинарная форма — однородным многочленом любой степени от двух переменных.

Дели́мость — одно из основных понятий арифметики и теории чисел, связанное с операцией деления. С точки зрения теории множеств, делимость целых чисел является отношением, определённым на множестве целых чисел.

Факторкольцо́ — общеалгебраическая конструкция, позволяющая распространить на случай колец конструкцию факторгруппы. Любое кольцо является группой по сложению, поэтому можно рассмотреть её подгруппу и взять факторгруппу. Однако для того, чтобы на этой факторгруппе можно было корректно определить умножение, необходимо, чтобы исходная подгруппа была замкнута относительно умножения на произвольные элементы кольца, то есть являлась идеалом.

Частичный предел некоторой последовательности — это предел одной из её подпоследовательностей, если только он существует. Для сходящихся числовых последовательностей частичный предел совпадает с обычным пределом в силу единственности последнего, однако в самом общем случае у произвольной последовательности может быть от нуля до бесконечного числа различных частичных пределов. При этом, если обычный предел характеризует точку, к которой элементы последовательности приближаются с ростом номера, то.

Дедеки́ндово сече́ние (или у́зкая щель) — один из способов построения вещественных чисел из рациональных.

Теорема косинусов — теорема евклидовой геометрии, обобщающая теорему Пифагора на произвольные плоские треугольники.

Предги́льбертово простра́нство — линейное пространство с определённым на нём скалярным произведением.

В общей алгебре, термин кручение относится к элементам группы, имеющим конечный порядок, или к элементам модуля, аннулируемым регулярным элементом кольца.

Характеристика (кольца или поля) — числовая величина, используемая в общей алгебре для описания некоторых свойств этих.

Числовая последовательность (ранее в русскоязычной математической литературе встречался термин вариа́нта, принадлежащий Ш. Мерэ) — это последовательность элементов числового пространства.

Определённый интеграл — аддитивный монотонный функционал, заданный на множестве пар, первая компонента которых есть интегрируемая функция или функционал, а вторая — область в множестве задания этой функции (функционала).

Треуго́льная ма́трица — в линейной алгебре квадратная матрица, у которой все элементы, стоящие ниже (или выше) главной диагонали, равны нулю.

Систе́ма корне́й (корнева́я систе́ма) в математике — конфигурация векторов в евклидовом пространстве, удовлетворяющая определённым геометрическим свойствам.

Полукольцо — общеалгебраическая структура, похожая на кольцо, но без требования существования противоположного по сложению элемента.

Математическая константа или математическая постоянная — величина, значение которой не меняется; в этом она противоположна переменной. В отличие от физических постоянных, математические постоянные определены независимо от каких бы то ни было физических измерений.

Ортогональный (ортонормированный) базис — ортогональная (ортонормированная) система элементов линейного пространства со скалярным произведением, обладающая свойством полноты.

Объём — это аддитивная функция от множества (мера), характеризующая вместимость области пространства, которую оно занимает. Изначально возникло и применялось без строгого определения в отношении тел трёхмерного евклидова пространства.

Теоремы об изоморфизме в алгебре — ряд теорем, связывающих понятия фактора, гомоморфизма и вложенного объекта. Утверждением теорем является изоморфизм некоторой пары групп, колец, модулей, линейных пространств, алгебр Ли или прочих алгебраических структур (в зависимости от области применения). Обычно насчитывают три теоремы об изоморфизме, называемые Первой (также основная теорема о гомоморфизме), Второй и Третьей. Хотя подобные теоремы достаточно легко следуют из определения фактора и честь их открытия.

Единичный круг — круг радиуса 1 на евклидовой плоскости (рассматриваемый обычно на комплексной плоскости); «идиоматическая» область в комплексном анализе.

Внутренний автоморфизм — это вид автоморфизма группы, определённый в терминах фиксированного элемента группы, называемого сопрягающим элементом. Формально, если G — группа, а a — элемент группы G, то внутренний автоморфизм, определённый элементом a — это отображение f из G в себя, определённое для всех x из G по формуле.

Кольцо многочленов — кольцо, образованное многочленами от одной или нескольких переменных с коэффициентами из другого кольца. Изучение свойств колец многочленов оказало большое влияние на многие области современной математики; можно привести примеры теоремы Гильберта о базисе, конструкции поля разложения и изучения свойств линейных операторов.

Нейтра́льный элеме́нт бинарной операции — элемент, который оставляет любой другой элемент неизменным при применении этой бинарной операции к этим двум элементам.

Произведение топологических пространств — это топологическое пространство, полученное, как множество, декартовым произведением исходных топологических пространств, и снабжённое естественной топологией, называемой топологией произведения или тихоновской топологией. Слово «естественная» здесь употребляется в смысле теории категорий и означает, что эта топология удовлетворяет некоторому универсальному свойству.

Вполне упорядоченное множество — линейно упорядоченное множество M такое, что в любом его непустом подмножестве есть минимальный элемент, другими словами, это фундированное множество с линейным порядком.

Рациональная функция — это дробь, числителем и знаменателем которой являются многочлены.

В теории чисел гладким числом называется целое число, все простые делители которого малы.

Одночлен (также моном) — простое математическое выражение, прежде всего рассматриваемое и используемое в элементарной алгебре, а именно, произведение, состоящее из числового множителя и одной или нескольких переменных, взятых каждая в неотрицательной целой степени .

Треугольник Паскаля — бесконечная таблица биномиальных коэффициентов, имеющая треугольную форму. В этом треугольнике на вершине и по бокам стоят единицы. Каждое число равно сумме двух расположенных над ним чисел. Строки треугольника симметричны относительно вертикальной оси. Назван в честь Блеза Паскаля. Числа, составляющие треугольник Паскаля, возникают естественным образом в алгебре, комбинаторике, теории вероятностей, математическом анализе, теории чисел.

Коммутант в общей алгебре — подсистема алгебр, содержащих групповую структуру (подгруппа, подкольцо, в наиболее общем случае — подгруппа мультиоператорной группы), показывающая степень некоммутативности групповой операции.

Аффи́нное простра́нство — математический объект (пространство), обобщающий некоторые свойства евклидовой геометрии. В отличие от векторного пространства, аффинное пространство оперирует с объектами не одного, а двух типов: «векторами» и «точками».

Скорость сходимости является основной характеристикой численных методов решения уравнений и оптимизации.

В линейной алгебре линейная зависимость — это свойство, которое может иметь подмножество линейного пространства. При линейной зависимости существует нетривиальная линейная комбинация элементов этого множества, равная нулевому элементу. При отсутствии такой комбинации, то есть, когда коэффициенты единственной такой линейной комбинации равны нулю, множество называется линейно независимым.

Сепара́бельное пространство (от лат. separabilis — отделимый) — топологическое пространство, в котором можно выделить счётное всюду плотное подмножество.

В математике (особенно в теории категорий), коммутативная диаграмма — изображаемая в наглядном виде структура наподобие графа, вершинами которой служат объекты определённой категории, а рёбрами — морфизмы. Коммутативность означает, что для любых выбранных начального и конечного объекта для соединяющих их ориентированных путей композиция соответствующих пути морфизмов не будет зависеть от выбора пути.

В теории групп циклическая перестановка — это перестановка элементов некоторого множества X, которая переставляет элементы некоторого подмножества S множества X циклическим образом, сохраняя на месте остальные элементы X (т.е. отображая их в себя). Например, перестановка , переводящая 1 в 3, 3 в 2, 2 в 4 и 4 в 1 является циклической, в то время как перестановка, переводящая 1 в 3, 3 в 1, 2 в 4 и 4 в 2 циклической не является.

Грани́ца мно́жества A — множество всех точек, расположенных сколь угодно близко как к точкам во множестве A, так и к точкам вне множества A.

Что такое полный квадрат

  • slide3

Описание метода выделения полного квадрата

Автор
Агаханова Яна Сергеевна 227 статей

§2. Выделение полного квадрата из квадратного трёхчлена

Описание метода выделения полного квадрата

Определение

Выражения вида 2 x 2 + 3 x + 5 , `-4x^2+5x+7` носят название квадратного трёхчлена. В общем случае квадратным трёхчленом называют выражение вида a x 2 + b x + c , где a , b , c a, b, c – произвольные числа, причём a ≠ 0 .

Рассмотрим квадратный трёхчлен x 2 — 4 x + 5 . Запишем его в таком виде: x 2 — 2 · 2 · x + 5 . Прибавим к этому выражению 2 2 и вычтем 2 2 , получаем: x 2 — 2 · 2 · x + 2 2 — 2 2 + 5 . Заметим, что x 2 — 2 · 2 · x + 2 2 = ( x — 2 ) 2 , поэтому

x 2 — 4 x + 5 = ( x — 2 ) 2 — 4 + 5 = ( x — 2 ) 2 + 1 .

Преобразование, которое мы сделали, носит название «выделение полного квадрата из квадратного трёхчлена».

Выделите полный квадрат из квадратного трёхчлена 9 x 2 + 3 x + 1 .

Заметим, что 9 x 2 = ( 3 x ) 2 , `3x=2*1/2*3x`. Тогда

Прибавим и вычтем к полученному выражению `(1/2)^2`, получаем

Покажем, как применяется метод выделения полного квадрата из квадратного трёхчлена для разложения квадратного трёхчлена на множители.

Разложите на множители квадратный трёхчлен 4 x 2 — 12 x + 5 .

Выделяем полный квадрат из квадратного трёхчлена:

2 x 2 — 2 · 2 x · 3 + 3 2 — 3 2 + 5 = 2 x — 3 2 — 4 = ( 2 x — 3 ) 2 — 2 2 .

Теперь применяем формулу a 2 — b 2 = ( a — b ) ( a + b ) , получаем:

( 2 x — 3 — 2 ) ( 2 x — 3 + 2 ) = ( 2 x — 5 ) ( 2 x — 1 ) .

Разложите на множители квадратный трёхчлен — 9 x 2 + 12 x + 5 .

— 9 x 2 + 12 x + 5 = — 9 x 2 — 12 x + 5 . Теперь замечаем, что 9 x 2 = 3 x 2 , — 12 x = — 2 · 3 x · 2 .

Прибавляем к выражению 9 x 2 — 12 x слагаемое 2 2 , получаем:

— 3 x 2 — 2 · 3 x · 2 + 2 2 — 2 2 + 5 = — 3 x — 2 2 — 4 + 5 = — 3 x — 2 2 + 4 + 5 = = — 3 x — 2 2 + 9 = 3 2 — 3 x — 2 2 .

Применяем формулу для разности квадратов, имеем:

— 9 x 2 + 12 x + 5 = 3 — 3 x — 2 3 + ( 3 x — 2 ) = ( 5 — 3 x ) ( 3 x + 1 ) .

Разложите на множители квадратный трёхчлен 3 x 2 — 14 x — 5 .

Мы не можем представить выражение 3 x 2 как квадрат какого-то выражения, т. к. ещё не изучали этого в школе. Это будете проходить позже, и уже в Задании №4 будем изучать квадратные корни. Покажем, как можно разложить на множители заданный квадратный трёхчлен:

Покажем, как применяется метод выделения полного квадрата для нахождения наибольшего или наименьшего значений квадратного трёхчлена.
Рассмотрим квадратный трёхчлен x 2 — x + 3 . Выделяем полный квадрат:

`(x)^2-2*x*1/2+(1/2)^2-(1/2)^2+3=(x-1/2)^2+11/4`. Заметим, что при `x=1/2` значение квадратного трёхчлена равно `11/4`, а при `x!=1/2` к значению `11/4` добавляется положительное число, поэтому получаем число, большее `11/4`. Таким образом, наименьшее значение квадратного трёхчлена равно `11/4` и оно получается при `x=1/2`.

Найдите наибольшее значение квадратного трёхчлена — 16 x 2 + 8 x + 6 .

Выделяем полный квадрат из квадратного трёхчлена: — 16 x 2 + 8 x + 6 = — 4 x 2 — 2 · 4 x · 1 + 1 — 1 + 6 = — 4 x — 1 2 — 1 + 6 = = — 4 x — 1 2 + 7 .

При `x=1/4` значение квадратного трёхчлена равно 7 , а при `x!=1/4` из числа 7 вычитается положительное число, то есть получаем число, меньшее 7 . Таким образом, число 7 является наибольшим значением квадратного трёхчлена, и оно получается при `x=1/4`.

Разложите на множители числитель и знаменатель дроби `/` и сократите эту дробь.

Заметим, что знаменатель дроби x 2 — 6 x + 9 = x — 3 2 . Разложим числитель дроби на множители, применяя метод выделения полного квадрата из квадратного трёхчлена.

x 2 + 2 x — 15 = x 2 + 2 · x · 1 + 1 — 1 — 15 = x + 1 2 — 16 = x + 1 2 — 4 2 = = ( x + 1 + 4 ) ( x + 1 — 4 ) = ( x + 5 ) ( x — 3 ) .

Данную дробь привели к виду `/(x-3)^2` после сокращения на ( x — 3 ) получаем `(x+5)/(x-3)`.

Разложите многочлен x 4 — 13 x 2 + 36 на множители.

Применим к этому многочлену метод выделения полного квадрата.

Разложите на множители многочлен 4 x 2 + 4 x y — 3 y 2 .

Применяем метод выделения полного квадрата. Имеем:

( 2 x ) 2 + 2 · 2 x · y + y 2 — y 2 — 3 y 2 = ( 2 x + y ) 2 — 2 y 2 = = ( 2 x + y + 2 y ) ( 2 x + y — 2 y ) = ( 2 x + 3 y ) ( 2 x — y ) .

Применяя метод выделения полного квадрата, разложите на множители числитель и знаменатель и сократите дробь `/`.

Преобразуем знаменатель дроби:

2. Метод выделения полного квадрата

решить уравнение x 2 + 14 x + 45 = 0 .
Решение:
разложим многочлен на множители методом выделения полного квадрата.

Для применения первой формулы необходимо получить выражение x 2 + 14 x + 49 = 0 .
Поэтому прибавим и отнимем от многочлена x 2 + 14 x + 45 число \(4\), чтобы выделить полный квадрат

x 2 + 14 x + 45 + 4 − 4 = 0 ; x 2 + 14 x + 45 + 4 − 4 = 0 ; x 2 + 14 x + 49 − 4 = 0 ; x + 7 2 − 4 = 0 .

Применим формулу «разность квадратов» a 2 − b 2 = a − b ⋅ a + b :

x + 7 2 − 2 2 = 0 ; ( x + 7 – 2 ) ( x + 7 + 2 ) = 0 ; ( x + 5 ) ( x + 9 ) = 0 ; x + 5 = 0 ; x + 9 = 0 ; x 1 = – 5 . x 2 = – 9 .
Ответ: \(– 9\); \(– 5\).

решить уравнение x 2 − 6 x − 7 = 0 .
Решение:
выделим в левой части полный квадрат.

Для применения второй формулы необходимо получить выражение x 2 − 6 x + 9 = 0 .
Поэтому запишем выражение x 2 − 6 x в следующем виде: x 2 − 6 x = x 2 − 2 ⋅ x ⋅ 3 .
В полученном выражении первое слагаемое — квадрат числа \(x\), а второе — удвоенное произведение \(x\) на \(3\).

Чтобы получить полный квадрат, нужно прибавить 3 2 .
Итак, прибавим и отнимем в левой части уравнения 3 2 , чтобы выделить полный квадрат.

x 2 − 6 x − 7 = x 2 − 2 ⋅ x ⋅ 3 + 3 2 − 3 2 − 7 = ( x 2 − 2 ⋅ x ⋅ 3 + 3 2 ) − 3 2 − 7 = = ( x − 3 ) 2 − 9 − 7 = ( x − 3 ) 2 − 16 .
Подставим в уравнение и применим формулу a 2 − b 2 = a − b ⋅ a + b .

( x − 3 ) 2 − 4 2 = 0 ; ( x − 3 − 4 ) ⋅ ( x − 3 + 4 ) = 0 ; ( x − 7 ) ⋅ ( x + 1 ) = 0 ; x − 7 = 0 ; x + 1 = 0 ; x 1 = 7 . x 2 = − 1 .

Теория: Выделение полного квадрата

Дополните квадратное уравнение справа и слева одним и тем же числом так, чтобы слева получился полный квадрат:

\(\displaystyle x^2+4x+\) \(\displaystyle =12+\)

Запишите получившееся равносильное квадратное уравнение:

\(\displaystyle \big(x\) \(\displaystyle \big)^2=\)

Квадрат суммы

Для любых \(\displaystyle a,\, b\) верно

Для того чтобы дополнить выражение \(\displaystyle x^2+4x\) до полного квадрата, распишем его так, чтобы удвоенное произведение было записано явно:

Сравним формулу полного квадрата и полученное нами выражение:

Следовательно, \(\displaystyle b=2\) и чтобы получить квадрат суммы, к исходному выражению нужно добавить \(\displaystyle \color^2=\color^2=\color\)

Поэтому дополним равенство

с обеих сторон числом \(\displaystyle \color\)

и распишем в его левой части квадрат суммы:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *